【深度学习入门:基于python的理论与实现读书笔记】第五章误差反向传播法

摘要

该文章简要介绍了神经网络的误差反向传播法,省去了大量的推理过程,重点讲述了神经网络误差反向传播法的代码实现。

第五章误差反向传播法

反向传播就是从后到前局部计算偏导数并将其与从上游传来的导数相乘

简单层的实现

乘法层的实现

乘法层的反向只需要将x,y翻转即可(xy对于x的偏导为y,对于y的偏导为x)

class MulLayer:
    def __init__(self):
        self.x = None
        self.y = None
    def forward(self, x, y):
        self.x = x
        self.y = y
        out = x * y
        return out
    def backward(self, dout):
        dx = dout * self.y # 翻转x和y
        dy = dout * self.x
        return dx, dy

加法层的实现

加法层的反向只需要原封不动地传递两个参数(x + y对x的偏导为1,对y的偏导也为1)

激活函数层的实现

ReLU层

在这里插入图片描述

ReLU函数会随着x的取值而发生变化,因此需要提前保存x的值。

class Relu:
    def __init__(self):
        self.mask = None
    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0
        return out
    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout
        return dx

这里使用了实例变量mask,这个变量mask是由True/False构成的NumPy数组,它会把正向传播时的输入x的元素中小于等于0的地方保存为True,其他地方(大于0的元素)保存为False。

反向传播中会使用正向传播时保存的mask,将从上游传来的dout的mask中的元素为True的地方设为0

Sigmoid层

在这里插入图片描述

这里直接记一个结论,Sigmoid函数的反向只需将上游传来的导数乘以 y ( 1 − y ) y(1-y) y(1y)即可,因此我们只需要将正向的输出保存下来即可。

class Sigmoid:
    def __init__(self):
        self.out = None
    def forward(self, x):
        out = 1 / (1 + np.exp(-x))
        self.out = out
        return out
    def backward(self, dout):
        dx = dout * (1.0 - self.out) * self.out
        return dx

Affine层和Softmax层的实现

Affine层

Affine层使用了矩阵乘积,下面是批版本的Affine层计算图

在这里插入图片描述

class Affine:
    def __init__(self, W, b):
        self.W = W
        self.b = b
        self.x = None
        self.dW = None
        self.db = None
    def forward(self, x):
        self.x = x
        out = np.dot(x, self.W) + self.b
        return out
    def backward(self, dout):
        dx = np.dot(dout, self.W.T)
        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)
        return dx

Softmax-with-Loss层

这里也只需要记一个简单结论

在这里插入图片描述

Softmax-with-Loss层的反向传播很简单就是y-t的形式(还要除以批大小)

class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None # 损失
        self.y = None    # softmax的输出
        self.t = None    # 监督数据(one-hot vector)
    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)
        return self.loss
    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        dx = (self.y - self.t) / batch_size # 这里需要除以一个批大小
        return dx

误差反向传播法的实现

下面只列出了需要改变的函数

class TowLayerNet:
     def __init__(self, input_size, hidden_size, output_size,
                 weight_init_std=0.01):
        # 初始化权重
        self.params = {
    
    }
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)
        # 生成层
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])
        self.lastLayer = SoftmaxWithLoss()
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        return x
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)
    def gradient(self, x, t):
        # forward 外部将调用这个函数来实现整个神经网络的推理
        self.loss(x, t)
        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)
        # 设置梯度
        grads = {
    
    }
        grads['W1'] = self.layers['Affine1'].dW
        grads['b1'] = self.layers['Affine1'].db
        grads['W2'] = self.layers['Affine2'].dW
        grads['b2'] = self.layers['Affine2'].db

这里需要注意的一点是gradient函数的forward,外部将直接调用gradient函数来实现整个神经网络的学习,以及误差反向传播,

最后是使用误差反向传播的神经网络学习:

 import sys, os
 sys.path.append(os.pardir)
 import numpy as np
 from dataset.mnist import load_mnist
 from two_layer_net import TwoLayerNet
 # 读入数据
(x_train, t_train), (x_test, t_test) = \
    load_mnist(normalize=True, one_hot_label=True)
 network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)
 iters_num = 10000
 train_size = x_train.shape[0]
 batch_size = 100
 learning_rate = 0.1
 train_loss_list = []
 train_acc_list = []
 test_acc_list = []
 iter_per_epoch = max(train_size / batch_size, 1)
 for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    # 通过误差反向传播法求梯度
    grad = network.gradient(x_batch, t_batch)
    # 更新
    for key in ('W1', 'b1', 'W2', 'b2'):
        network.params[key] -= learning_rate * grad[key]
    loss = network.loss(x_batch, t_batch)
    train_loss_list.append(loss)
    if i % iter_per_epoch == 0:
        train_acc = network.accuracy(x_train, t_train)
        test_acc = network.accuracy(x_test, t_test)
        train_acc_list.append(train_acc)
        test_acc_list.append(test_acc)
        print(train_acc, test_acc)

其实没有什么区别,只不过grad用了更简便的方式求得。