基于COCO数据集的YOLOv8目标检测onnx模型推理
在本博客中,我们将探讨如何使用YOLOv8目标检测模型进行推理,包括图片,视频文件,摄像头实时检测,特别是ONNX在不同大小(YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x)的模型上进行的实验。我们还将讨论所需的环境配置,代码实现,以及如何展示推理结果。
环境配置
在详细描述环境配置和安装步骤之前,请确保您的系统已经安装了Python和pip。下面是详细的环境配置步骤,适用于基于YOLOv8模型进行目标检测的项目。
1. 安装必要的Python库
pip install onnxruntime-gpu==1.13.1 opencv-python==4.7.0.68 numpy==1.24.1 Pillow==9.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
如果您没有GPU或者不打算使用GPU,可以安装onnxruntime
而不是onnxruntime-gpu
:
pip install onnxruntime==1.13.1 opencv-python==4.7.0.68 numpy==1.24.1 Pillow==9.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
2. 验证安装
安装完成后,您可以通过运行Python并尝试导入安装的包来验证是否成功安装了所有必要的库:
import onnxruntime
import cv2
import numpy
import PIL
如果上述命令没有引发任何错误,那么恭喜您,您已成功配置了运行环境。
小贴士
- 如果您在安装过程中遇到任何问题,可能需要更新pip到最新版本:
pip install --upgrade pip
。 - 对于使用NVIDIA GPU的用户,确保您的系统已安装CUDA和cuDNN。
onnxruntime-gpu
要求系统预装这些NVIDIA库以利用GPU加速。
按照这些步骤,您应该能够成功配置环境并运行基于YOLOv8的目标检测项目了。
权重下载
YOLOv8模型的权重可以通过以下百度网盘链接下载:
- 链接:https://pan.baidu.com/s/1xpAdN7C9CS-L4XBLgBG8Kw
- 提取码:8dm8
请确保下载适合您需求的模型版本。
代码实现
以下是进行目标检测的整体代码流程,包括模型加载、图像预处理、推理执行、后处理及结果展示的步骤。
import cv2
import onnxruntime as ort
from PIL import Image
import numpy as np
# 置信度
confidence_thres = 0.35
# iou阈值
iou_thres = 0.5
# 类别
classes = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck',
8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench',
14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase',
29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat',
35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple',
48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut',
55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet',
62: 'tv',