pandas系列----DataFrame简介

DataFrame是Pandas库中最常用的数据结构之一,它是一个类似于二维数组或表格的数据结构。DataFrame由多个列组成,每个列可以是不同的数据类型(如整数、浮点数、字符串等)。每列都有一个列标签(column label),每行都有一个索引(index),使得我们可以通过标签或索引来访问和操作数据。我们可以使用多种方式来创建DataFrame,最常见的方式是从CSV文件、Excel文件、SQL数据库等外部数据源中读取数据。另外,我们也可以通过手动输入数据、从字典或列表中创建DataFrame。一旦创建了DataFrame,我们可以使用各种方法和函数来对数据进行操作。例如,我们可以进行数据的筛选、排序、合并、分组等操作,还可以进行统计分析、数据可视化等。总的来说,DataFrame是Pandas库中非常强大和灵活的数据结构,使得我们可以轻松地对数据进行处理、分析和可视化。

DataFrame是pandas库中用于处理和分析数据的重要数据结构。它可以被看作是一个二维的表格,类似于电子表格或SQL中的数据库表。

DataFrame的特点包括:

  1. 二维结构:DataFrame由行和列组成,可以像表格一样对数据进行操作和分析。

  2. 标签索引:每一个列和行都有一个唯一的标签索引,可以通过标签来引用和操作数据。

  3. 不同数据类型:DataFrame中的每一列可以是不同的数据类型,例如整数、浮点数、字符串等。

  4. 缺失值处理:DataFrame可以处理缺失值,可以使用NaN或None来表示缺失的数据。

  5. 灵活的操作:DataFrame可以进行多种灵活的操作,包括数据过滤、排序、统计、重塑等。

  6. 数据对齐:DataFrame可以根据标签自动对齐数据,使得操作更加方便。

DataFrame是pandas库中最常用的数据结构之一,提供了丰富的功能和方法,可以快速高效地处理和分析数据。

一、Dataframe的创建

DataFrame可以通过多种方式进行创建。下面列举了一些常见的创建DataFrame的方法:

1. 从CSV文件或Excel文件中读取数据

2. 从字典中创建DataFrame

3. 从列表中创建DataFrame

4. 手动创建DataFrame

1、从字典中创建DataFrame

        使用字典创建DataFrame是一种常见的方法。可以将字典中的每个键值对作为一列数据,通过pd.DataFrame()函数将字典转换为DataFrame对象。

2. 从CSV文件或Excel文件中读取数据

        可以使用pandas库中的read_csv()和read_excel()函数从CSV文件或Excel文件中读取数据,并创建DataFrame。传入参数为文件地址。

二、Dataframe切片

1、索引

df[[列名1,列名2...列名n]]    ——    其中n=[0,正无穷]

2、切片

2.1、行切片

        df[行索引1:行索引2]    ——    不包括行索引2

        df.loc[行索引1:行索引2]    ——    包括行索引2

2.2、列切片

        df.loc[:,'列名':'列名']

三、Dataframe方法

方法 说明 方法 说明
min 最小值 max 最大值
mean 均值 ptp 极差
median 中位数 std 标准差
var 方差 cov 协方差
sem 标准误差 mode 众数
skew 样本偏度 kurt 样本峰度
quantile 四分位数 count 非空值数
describe 描述统计 mad 平均绝对离差