近期,Qwen 发布了 QwQ-32B - 一个在许多基准测试中性能可与 DeepSeek-R1 相媲美的推理模型。QwQ在推理模型中集成了调用工具的能力,使其能够在使用工具的同时进行批判性思考,并根据反馈调整推理过程。这样的能力使得QwQ能够很好在Agentic System中使用。本文介绍如何通过vLLM和SgLang结合QwQ-32B,搭建OpenAI格式的聊天API,并与外部函数结合来拓展模型的更多功能。
tools是OpenAI的Chat Completion API中的一个可选参数,可用于提供函数调用规范(function specifications)。这样做的目的是使模型能够生成符合所提供的规范的函数参数格式。同时,API 实际上不会执行任何函数调用。开发人员需要使用模型输出来执行函数调用。
vLLM和SgLang均支持OpenAI-API的tool参数。通过tool参数以及其中的函数调用规范,QwQ将能决定何时调用什么样的函数,以及怎么调用函数。
注:本文测试用例参考OpenAI cookbook:https://cookbook.openai.com/examples/how_to_call_functions_with_chat_models
本文主要包含以下两个个部分:
-
模型部署:使用vLLM,SgLang和QwQ,通过设置参数,