勒让德多项式 (Legendre)
当区间为 [ − 1 , 1 ] [-1,1] [−1,1],权函数 ρ ( x ) = 1 ρ(x)=1 ρ(x)=1时,由 1 , x , . . . , x n , . . . {1,x,...,x^n,...} 1,x,...,xn,...正交化得到的多项式称为勒让德多项式,并用 P 0 ( x ) , P 1 ( x ) , . . . , P n ( x ) , . . . P_0(x),P_1(x),...,P_n(x),... P0(x),P1(x),...,Pn(x),...表示。
Legendre勒让德多项式的递推公式:
( n + 1 ) × P n + 1 ( x ) = ( 2 n + 1 ) × x × P n ( x ) − n × P n − 1 ( x ) , ( n = 1 , 2 , . . . ) (n+1) \times P_{n+1}(x)=(2n+1) \times x \times P_n(x)-n \times P_{n-1}(x),(n=1,2,...) (n+1)×Pn+1(x)=(2n+1)×x×Pn(x)−n×Pn−1(x),(n=1,2,...)
P 0 ( x ) = 1 P_0(x)=1 P0(x)=1
P 1 ( x ) = x P_1(x)=x P1(x)=x
P 2 ( x ) = ( 3 x 2 − 1 ) / 2 P_2(x)=(3x^2-1)/2 P2(x)=(3x2−1)/2
P 3 ( x ) = ( 5 x 3 − 3 x ) / 2 P_3(x)=(5x^3-3x)/2 P3(x)=(5x3−3x)/2
P 4 ( x ) = ( 35 x 4 − 30 x 2 + 3 ) / 8 P_4(x)=(35x^4-30x^2+3)/8 P4(x)=(35x4−30x2+3)/8
P 5 ( x ) = ( 63 x 5 − 70 x 3 + 15 x ) / 8 P_5(x)=(63x^5-70x^3+15x)/8 P5(x)=(63x5−70x3+15x)/8
P 6 ( x ) = ( 231 x 6 − 315 x 4 + 105 x 2 − 5 ) / 16 , . . . P_6(x)=(231x^6-315x^4+105x^2-5)/16,... P6(x)=(231x6−315x4+105x2−5)/16,...