linux-0.11/init/main.c流程分析

    main.c是BIOS各种初始化后进入的第一个C主程序,其作用简单的讲就是进行各种外围硬件的初始化,然后fork第一个进程,然后开始执行第一个程序bash,具体代码如下:

#define __LIBRARY__
#include <unistd.h>
#include <time.h>

/*
 * we need this inline - forking from kernel space will result
 * in NO COPY ON WRITE (!!!), until an execve is executed. This
 * is no problem, but for the stack. This is handled by not letting
 * main() use the stack at all after fork(). Thus, no function
 * calls - which means inline code for fork too, as otherwise we
 * would use the stack upon exit from 'fork()'.
 *
 * Actually only pause and fork are needed inline, so that there
 * won't be any messing with the stack from main(), but we define
 * some others too.
 */
static inline _syscall0(int,fork)
static inline _syscall0(int,pause)
static inline _syscall1(int,setup,void *,BIOS)
static inline _syscall0(int,sync)

#include <linux/tty.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <asm/system.h>
#include <asm/io.h>

#include <stddef.h>
#include <stdarg.h>
#include <unistd.h>
#include <fcntl.h>      
  #include <sys/types.h>

#include <linux/fs.h>                             ///包含的各种头文件,定义各种内嵌函数

static char printbuf[1024];

extern int vsprintf();
extern void init(void);
extern void blk_dev_init(void);
extern void chr_dev_init(void);
extern void hd_init(void);
extern void floppy_init(void);
extern void mem_init(long start, long end);
extern long rd_init(long mem_start, int length);
extern long kernel_mktime(struct tm * tm);
extern long startup_time;

/*
 * This is set up by the setup-routine at boot-time
 */
#define EXT_MEM_K (*(unsigned short *)0x90002)
#define DRIVE_INFO (*(struct drive_info *)0x90080)
#define ORIG_ROOT_DEV (*(unsigned short *)0x901FC)                    //宏定义,声明函数,定义部分变量

#define CMOS_READ(addr) ({ \
outb_p(0x80|addr,0x70); \
inb_p(0x71); \
})

#define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10)             //宏定义函数

static void time_init(void)
{
        struct tm time;

        do {
                time.tm_sec = CMOS_READ(0);
                time.tm_min = CMOS_READ(2);
                time.tm_hour = CMOS_READ(4);
                time.tm_mday = CMOS_READ(7);
                time.tm_mon = CMOS_READ(8);
                time.tm_year = CMOS_READ(9);
        } while (time.tm_sec != CMOS_READ(0));
        BCD_TO_BIN(time.tm_sec);
        BCD_TO_BIN(time.tm_min);
        BCD_TO_BIN(time.tm_hour);
        BCD_TO_BIN(time.tm_mday);
        BCD_TO_BIN(time.tm_mon);
        BCD_TO_BIN(time.tm_year);
        time.tm_mon--;
        startup_time = kernel_mktime(&time);
}

static long memory_end = 0;
static long buffer_memory_end = 0;
static long main_memory_start = 0;                                        //静态变量

struct drive_info { char dummy[32]; } drive_info;                          //设备信息结构体

void main(void)         /* This really IS void, no error here. */
{                       /* The startup routine assumes (well, ...) this */
/*
 * Interrupts are still disabled. Do necessary setups, then
 * enable them
 */
        ROOT_DEV = ORIG_ROOT_DEV;
        drive_info = DRIVE_INFO;
        memory_end = (1<<20) + (EXT_MEM_K<<10);
        memory_end &= 0xfffff000;
        if (memory_end > 16*1024*1024)
                memory_end = 16*1024*1024;
        if (memory_end > 12*1024*1024)
                buffer_memory_end = 4*1024*1024;
        else if (memory_end > 6*1024*1024)
                buffer_memory_end = 2*1024*1024;
        else
                buffer_memory_end = 1*1024*1024;
        main_memory_start = buffer_memory_end;
#ifdef RAMDISK
        main_memory_start += rd_init(main_memory_start, RAMDISK*1024);
#endif
        mem_init(main_memory_start,memory_end);
        trap_init();
        blk_dev_init();
        chr_dev_init();
        tty_init();
        time_init();
        sched_init();
        buffer_init(buffer_memory_end);
        hd_init();
        floppy_init();
        sti();                                                //各种外围硬件初始化
        move_to_user_mode();                                  //切换CPU到用户模式,要知道linux中,所有的进程都是在用户态模式下运行的
                                                              //只有在BIOS时,才是实模式,其他的为保护模式
        
    if (!fork()){                                           //创建的第一个进程0,这里的判断条件,只有返回为0时,才会执行下面的程序
                                                            //而返回值0代表的是子进程,所以init会在子进程中执行,这也是fork的巧妙
                                                            //所在,类似于ucos中的oscreate,不过更灵活
                  /* we count on this going ok */
                init();                                     //正如作者所注释的,我们全靠这个init了,靠他才能真正启动linux干活
        }
/*
 *   NOTE!!   For any other task 'pause()' would mean we have to get a
 * signal to awaken, but task0 is the sole exception (see 'schedule()')
 * as task 0 gets activated at every idle moment (when no other tasks
 * can run). For task0 'pause()' just means we go check if some other
 * task can run, and if not we return here.
 */
        for(;;) pause();                                    //很显然,这个时候,这条语句是在父进程下执行,这里pause将意味着
                                                            //该调用它的人物必须要等待收到一个信号才会返回就绪运行态,但是task0
                                                            //是唯一比较特殊的(它必须特殊),因为task0是在任何空闲时间都会被激活
                                                            //前提是没有其他任务运行,因此对于task0,pause仅仅意味着我们返回查看
                                                            //是否有其他任务可以运行,如果没有,则就回到这里,一直循环执行pause
                                                            //这是为了防止CPU闲着没事儿做,因为cpu没有事儿干,就会疯掉的
                                                            //这个类似与ucos中的idle任务,看来操作系统都异曲同工
}
static int printf(const char *fmt, ...)
{
        va_list args;
        int i;

        va_start(args, fmt);
        write(1,printbuf,i=vsprintf(printbuf, fmt, args));
        va_end(args);
        return i;
}                                                            //打印函数

static char * argv_rc[] = { "/bin/sh", NULL };
static char * envp_rc[] = { "HOME=/", NULL };

static char * argv[] = { "-/bin/sh",NULL };
static char * envp[] = { "HOME=/usr/root", NULL };              //定义变量
void init(void)                                                //init函数,重要人员出场了
{
        int pid,i;

        setup((void *) &drive_info);
        (void) open("/dev/tty0",O_RDWR,0);                    //打开串口,到现在这个套路还在
        (void) dup(0);
        (void) dup(0);
        printf("%d buffers = %d bytes buffer space\n\r",NR_BUFFERS,
                NR_BUFFERS*BLOCK_SIZE);
        printf("Free mem: %d bytes\n\r",memory_end-main_memory_start);
        if (!(pid=fork())) {                                    //创建一个进程,分析如果pid=0,也就是表示下面的程序
                                                                //是在子进程中执行的
                close(0);
                if (open("/etc/rc",O_RDONLY,0))                 //打开/etc/rc,那会儿应该就是些自启动程序,参数等等
                        _exit(1);
                execve("/bin/sh",argv_rc,envp_rc);              //执行/bin/sh ,这是linux的最大特征,神马桌面都是给麻瓜用的,
                                                                //大神是不用的
                _exit(2);                                       //如果打开失败,则退出
        }
        if (pid>0)                                             //这个很明显是在父进程中执行,依然就是等待子进程执行完毕,停止
                while (pid != wait(&i))
                        /* nothing */;
        while (1) {                                            //进入下一个循环,也是主循环
                if ((pid=fork())<0) {                          //再次创建1个任务
                        printf("Fork failed in init\r\n");     //如果创建失败则打印
                        continue;
                }
                if (!pid) {                                    //新创建的子进程将要执行的内容
                        close(0);close(1);close(2);            //关闭之前的句柄,如各种串口
                        setsid();
                        (void) open("/dev/tty0",O_RDWR,0);     //再一次打开串口
                        (void) dup(0);            
                        (void) dup(0);
                        _exit(execve("/bin/sh",argv,envp));    //再次执行/bin/sh,这里的参数跟前面的不一样了,这里也是进入到真正与
                                                               //用户直接对接操作的sh中,到这里,用户其实就可以通过bash来进行各种
                                                                //操作了
                        while (1)                               //毫无疑问,父进程仍然是等待儿子运行到停止
                        if (pid == wait(&i))
                                break;
                printf("\n\rchild %d died with code %04x\n\r",pid,i);
                sync();
        }
        _exit(0);       /* NOTE! _exit, not exit() */
}
}

小记:这个fork满有意思,老子(父进程)生了儿子(子进程),就是希望儿子来完成自己的梦想,而这个老子,基本上也就退休了,充满爱意的一直循环等待
着儿子完成梦想,再次回到他身边。

猜你喜欢

转载自blog.csdn.net/u012351051/article/details/79646843