Udacity Deep Learning实战(三)

第三次作业主要学习如何使用tf的函数处理模型过拟合。
源码https://github.com/Zerof007/uda_deeplearning_z
Problem 1

Linear Regression with Regularization

batch_size = 128

graph = tf.Graph()
with graph.as_default():

    # Input data. For the training data, we use a placeholder that will be fed
    # at run time with a training minibatch.
    tf_train_dataset = tf.placeholder(tf.float32,
                                    shape=(batch_size, image_size * image_size))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    # ==> define parameter of regularization
    lmbda = tf.placeholder(tf.float32)

    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)

    # Variables.
    weights = tf.Variable(
    tf.truncated_normal([image_size * image_size, num_labels]))
    biases = tf.Variable(tf.zeros([num_labels]))

    # Training computation.
    logits = tf.matmul(tf_train_dataset, weights) + biases
    loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) + lmbda * tf.nn.l2_loss(weights)
    # ==> add regularized item

    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(
    tf.matmul(tf_valid_dataset, weights) + biases)
    test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)

num_steps = 3001

with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print("Initialized")
    for step in range(num_steps):
        # Pick an offset within the training data
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        # Generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]

        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, lmbda : 1e-3}
        _, l, predictions = session.run(
          [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print("Minibatch loss at step %d: %f" % (step, l))
            print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
            print("Validation accuracy: %.1f%%" % accuracy(
            valid_prediction.eval(), valid_labels))
    print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))

结果:

Initialized
Minibatch loss at step 0: 19.376085
Minibatch accuracy: 3.9%
Validation accuracy: 13.8%
Minibatch loss at step 500: 2.657836
Minibatch accuracy: 77.3%
Validation accuracy: 76.4%
Minibatch loss at step 1000: 1.627377
Minibatch accuracy: 79.7%
Validation accuracy: 78.4%
Minibatch loss at step 1500: 1.153279
Minibatch accuracy: 78.9%
Validation accuracy: 80.0%
Minibatch loss at step 2000: 0.969894
Minibatch accuracy: 79.7%
Validation accuracy: 80.5%
Minibatch loss at step 2500: 0.691905
Minibatch accuracy: 86.7%
Validation accuracy: 81.0%
Minibatch loss at step 3000: 0.581506
Minibatch accuracy: 86.7%
Validation accuracy: 82.1%
Test accuracy: 89.0%
Neural Network (1-layer ReLU) with Regularization

hidden_nodes = 1024
batch_size = 128

def computation(dataset, weights, biases):
    weight_sum = tf.add(tf.matmul(dataset, weights[0]), biases[0])
    hidden_layer = tf.nn.relu(weight_sum)
    logits = tf.add(tf.matmul(hidden_layer, weights[1]), biases[1])
    return logits

graph = tf.Graph()
with graph.as_default():

    # Input data. For the training data, we use a placeholder that will be fed
    # at run time with a training minibatch.
    tf_train_dataset = tf.placeholder(tf.float32,
                                    shape=(batch_size, image_size * image_size))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    lmbda = tf.placeholder(tf.float32) # ==> add placeholder

    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)

    # Variables.
    weights = [tf.Variable(tf.truncated_normal([image_size * image_size, hidden_nodes])), 
             tf.Variable(tf.truncated_normal([hidden_nodes, num_labels]))
            ]
    biases = [tf.Variable(tf.zeros([hidden_nodes])),
            tf.Variable(tf.zeros([num_labels]))]

    # Training computation.
    logits = computation(tf_train_dataset, weights, biases)

    loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) + lmbda * (tf.nn.l2_loss(weights[0]) + tf.nn.l2_loss(weights[1])) # ==> add regularization

    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(computation(tf_valid_dataset, weights, biases))
    test_prediction = tf.nn.softmax(computation(tf_test_dataset, weights, biases))


def accuracy(predictions, labels):
  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])

num_steps = 3001

with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print("Initialized")
    for step in range(num_steps):

        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        # Generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]

        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, lmbda : 1e-3}
        _, l, predictions = session.run(
          [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print("Minibatch loss at step %d: %f" % (step, l))
            print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
            print("Validation accuracy: %.1f%%" % accuracy(
            valid_prediction.eval(), valid_labels))
    print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))

结果:

Initialized
Minibatch loss at step 0: 617.020447
Minibatch accuracy: 14.1%
Validation accuracy: 34.7%
Minibatch loss at step 500: 206.956284
Minibatch accuracy: 72.7%
Validation accuracy: 77.8%
Minibatch loss at step 1000: 113.745140
Minibatch accuracy: 85.2%
Validation accuracy: 81.3%
Minibatch loss at step 1500: 68.286926
Minibatch accuracy: 81.2%
Validation accuracy: 82.7%
Minibatch loss at step 2000: 41.318298
Minibatch accuracy: 85.9%
Validation accuracy: 84.4%
Minibatch loss at step 2500: 25.188065
Minibatch accuracy: 91.4%
Validation accuracy: 85.7%
Minibatch loss at step 3000: 15.299156
Minibatch accuracy: 93.8%
Validation accuracy: 86.6%
Test accuracy: 93.3%

Problem 2

def accuracy(predictions, labels):
  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])

num_steps = 3001

with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print("Initialized")
    for step in range(num_steps):
        offset = ((step % 10) * batch_size) % (train_labels.shape[0] - batch_size)
        # Generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]

        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, lmbda : 1e-3}
        _, l, predictions = session.run(
          [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print("Minibatch loss at step %d: %f" % (step, l))
            print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
            print("Validation accuracy: %.1f%%" % accuracy(
            valid_prediction.eval(), valid_labels))
    print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))

结果:

Initialized
Minibatch loss at step 0: 21.644571
Minibatch accuracy: 7.0%
Validation accuracy: 13.5%
Minibatch loss at step 500: 1.961034
Minibatch accuracy: 96.9%
Validation accuracy: 70.4%
Minibatch loss at step 1000: 1.173835
Minibatch accuracy: 99.2%
Validation accuracy: 72.0%
Minibatch loss at step 1500: 0.738649
Minibatch accuracy: 99.2%
Validation accuracy: 73.4%
Minibatch loss at step 2000: 0.498035
Minibatch accuracy: 99.2%
Validation accuracy: 74.6%
Minibatch loss at step 2500: 0.356002
Minibatch accuracy: 100.0%
Validation accuracy: 75.4%
Minibatch loss at step 3000: 0.271700
Minibatch accuracy: 100.0%
Validation accuracy: 75.8%
Test accuracy: 84.4%

结论:计算minibatch的offet时,修改为offset = ((step % 10) * batch_size) % (train_labels.shape[0] - batch_size),限制反复使用相同的10个batch数据(每个batch有128个样本),每次epoch使用一个batch。可以看到在2500次迭代后,minibatch的数据可以达到100%准确率,但在测试集上只有84.4%,远不如之前的93.3%

Problem 3

hidden_nodes = 1024
batch_size = 128

def computation(dataset, weights, biases, is_dropout=False, keep_prob=0.5):
    weight_sum = tf.add(tf.matmul(dataset, weights[0]), biases[0])
    hidden_layer = tf.nn.relu(weight_sum)
    if is_dropout: # ==> add dropout
        hidden_layer = tf.nn.dropout(hidden_layer, keep_prob)
    logits = tf.add(tf.matmul(hidden_layer, weights[1]), biases[1])
    return logits

graph = tf.Graph()
with graph.as_default():

    # Input data. For the training data, we use a placeholder that will be fed
    # at run time with a training minibatch.
    tf_train_dataset = tf.placeholder(tf.float32,
                                    shape=(batch_size, image_size * image_size))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    lmbda = tf.placeholder(tf.float32) # ==> add placeholder
    keep_prob = tf.placeholder(tf.float32) # ==> add placeholder

    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)

    # Variables.
    weights = [tf.Variable(tf.truncated_normal([image_size * image_size, hidden_nodes])), 
             tf.Variable(tf.truncated_normal([hidden_nodes, num_labels]))]
    biases = [tf.Variable(tf.zeros([hidden_nodes])),
            tf.Variable(tf.zeros([num_labels]))]

    # Training computation.
    logits = computation(tf_train_dataset, weights, biases, is_dropout=True, keep_prob=keep_prob)

    loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) + lmbda * (tf.nn.l2_loss(weights[0]) + tf.nn.l2_loss(weights[1])) # ==> add regularization

    # Optimizer.
    optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(computation(tf_valid_dataset, weights, biases))
    test_prediction = tf.nn.softmax(computation(tf_test_dataset, weights, biases))
Initialized
Minibatch loss at step 0: 746.116699
Minibatch accuracy: 11.7%
Validation accuracy: 32.7%
Minibatch loss at step 500: 200.717834
Minibatch accuracy: 75.0%
Validation accuracy: 78.4%
Minibatch loss at step 1000: 114.825737
Minibatch accuracy: 80.5%
Validation accuracy: 80.8%
Minibatch loss at step 1500: 68.643456
Minibatch accuracy: 79.7%
Validation accuracy: 82.9%
Minibatch loss at step 2000: 41.425804
Minibatch accuracy: 82.0%
Validation accuracy: 83.5%
Minibatch loss at step 2500: 25.150757
Minibatch accuracy: 86.7%
Validation accuracy: 85.3%
Minibatch loss at step 3000: 15.244875
Minibatch accuracy: 92.2%
Validation accuracy: 86.2%
Test accuracy: 92.7%

结论:只在训练中加入dropout操作,验证和测试时不加入。随机丢弃一部分神经元,以一定概率使得神经元激活函数不参与。貌似只能解决小minibatch的过拟合问题,对于大minibatch时,加入dropout效果迭代3000次得到(92.7%)并不如不加的(93.3%)。

Problem 4

hidden_nodes_1 = 1024
hidden_nodes_2 = 500
hidden_nodes_3 = 100
batch_size = 128

def computation(dataset, weights, biases, is_dropout=False): 
    weight_sum_1 = tf.matmul(dataset, weights[0])+ biases[0]
    hidden_layer_1 = tf.nn.relu(weight_sum_1)
    if is_dropout:
        hidden_layer_1 = tf.nn.dropout(hidden_layer_1, keep_prob=0.7)
    weight_sum_2 = tf.matmul(hidden_layer_1, weights[1]) + biases[1]
    hidden_layer_2 = tf.nn.relu(weight_sum_2)
    if is_dropout:
        hidden_layer_2 = tf.nn.dropout(hidden_layer_2, keep_prob=0.7)
    weight_sum_3 = tf.matmul(hidden_layer_2, weights[2]) + biases[2]
    hidden_layer_3 = tf.nn.relu(weight_sum_3)
    if is_dropout:
        hidden_layer_3 = tf.nn.dropout(hidden_layer_3, keep_prob=0.7)
    outputs = tf.matmul(hidden_layer_3, weights[3]) + biases[3]
    return outputs

graph = tf.Graph()
with graph.as_default():

    # Input data. For the training data, we use a placeholder that will be fed
    # at run time with a training minibatch.
    tf_train_dataset = tf.placeholder(tf.float32,
                                    shape=(batch_size, image_size * image_size))
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
    lmbda = tf.placeholder(tf.float32) # ==> add placeholder
#     keep_prob = tf.placeholder(tf.float32) # ==> add placeholder

    tf_valid_dataset = tf.constant(valid_dataset)
    tf_test_dataset = tf.constant(test_dataset)

    global_step = tf.Variable(0) # ==> Add for learning rate decay

    # Variables.
    weights = [tf.Variable(tf.truncated_normal([image_size * image_size, hidden_nodes_1],
                                stddev=np.sqrt(2.0 / (image_size * image_size)))), 
            tf.Variable(tf.truncated_normal([hidden_nodes_1, hidden_nodes_2],
                                stddev=np.sqrt(2.0 / hidden_nodes_1))),
            tf.Variable(tf.truncated_normal([hidden_nodes_2, hidden_nodes_3],
                                stddev=np.sqrt(2.0 / hidden_nodes_2))),
            tf.Variable(tf.truncated_normal([hidden_nodes_3, num_labels],
                                stddev=np.sqrt(2.0 / hidden_nodes_3)))

              ]

    biases = [tf.Variable(tf.zeros([hidden_nodes_1])),
            tf.Variable(tf.zeros([hidden_nodes_2])),
            tf.Variable(tf.zeros([hidden_nodes_3])),
            tf.Variable(tf.zeros([num_labels]))
             ]

    # Training computation.
    logits = computation(tf_train_dataset, weights, biases, is_dropout=True) 

    loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) \
        + lmbda * (tf.nn.l2_loss(weights[0]) \
        + tf.nn.l2_loss(weights[1]) \
        + tf.nn.l2_loss(weights[2]) \
        + tf.nn.l2_loss(weights[3])) # ==> add regularization

    # Optimizer.
    learning_rate = tf.train.exponential_decay(0.5, global_step, 500, 0.9)
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
#     optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

    # Predictions for the training, validation, and test data.
    train_prediction = tf.nn.softmax(logits)
    valid_prediction = tf.nn.softmax(computation(tf_valid_dataset, weights, biases))
    test_prediction = tf.nn.softmax(computation(tf_test_dataset, weights, biases))


def accuracy(predictions, labels):
  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])

num_steps = 8001

with tf.Session(graph=graph) as session:
    tf.global_variables_initializer().run()
    print("Initialized")
    for step in range(num_steps):
        offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
        # Generate a minibatch.
        batch_data = train_dataset[offset:(offset + batch_size), :]
        batch_labels = train_labels[offset:(offset + batch_size), :]

        feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels, lmbda : 1e-3}
        _, l, predictions = session.run(
          [optimizer, loss, train_prediction], feed_dict=feed_dict)
        if (step % 500 == 0):
            print("Minibatch loss at step %d: %f" % (step, l))
            print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
            print("Validation accuracy: %.1f%%" % accuracy(
            valid_prediction.eval(), valid_labels))
    print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))

结果:

Initialized
Minibatch loss at step 0: 3.903420
Minibatch accuracy: 8.6%
Validation accuracy: 31.9%
Minibatch loss at step 500: 1.387359
Minibatch accuracy: 84.4%
Validation accuracy: 84.9%
Minibatch loss at step 1000: 0.973619
Minibatch accuracy: 88.3%
Validation accuracy: 86.1%
Minibatch loss at step 1500: 0.967071
Minibatch accuracy: 84.4%
Validation accuracy: 86.5%
Minibatch loss at step 2000: 0.897126
Minibatch accuracy: 82.8%
Validation accuracy: 87.2%
Minibatch loss at step 2500: 0.560037
Minibatch accuracy: 91.4%
Validation accuracy: 87.5%
Minibatch loss at step 3000: 0.477757
Minibatch accuracy: 93.8%
Validation accuracy: 88.1%
Minibatch loss at step 3500: 0.596783
Minibatch accuracy: 86.7%
Validation accuracy: 88.2%
Minibatch loss at step 4000: 0.578859
Minibatch accuracy: 89.8%
Validation accuracy: 88.5%
Minibatch loss at step 4500: 0.515870
Minibatch accuracy: 89.1%
Validation accuracy: 88.8%
Minibatch loss at step 5000: 0.603967
Minibatch accuracy: 85.2%
Validation accuracy: 89.2%
Minibatch loss at step 5500: 0.420070
Minibatch accuracy: 92.2%
Validation accuracy: 89.3%
Minibatch loss at step 6000: 0.486005
Minibatch accuracy: 93.8%
Validation accuracy: 89.4%
Minibatch loss at step 6500: 0.555979
Minibatch accuracy: 90.6%
Validation accuracy: 89.6%
Minibatch loss at step 7000: 0.377530
Minibatch accuracy: 93.0%
Validation accuracy: 89.6%
Minibatch loss at step 7500: 0.470899
Minibatch accuracy: 91.4%
Validation accuracy: 89.6%
Minibatch loss at step 8000: 0.398080
Minibatch accuracy: 90.6%
Validation accuracy: 89.8%
Test accuracy: 95.2%

学习总结:

引入正则化来缓解过拟合:用tf.nn.l2_loss()计算模型参数的L2范数,加入到loss中,具体如下:

loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) + lmbda * (tf.nn.l2_loss(weights[0]) + tf.nn.l2_loss(weights[1])) # ==> add regularization

# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

用较大的minibatch样本数缓解过拟合:在用较小的minbatch样本训练会出现过拟合,即验证集达到100%准确率,但测试集准确率不高

引入dropout来缓解过拟合:用tf.nn.dropout(keep_prob)在神经网络的训练中引入dropout,指定keep_prob,具体如下:

# tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)用法
# 参数:训练样本x,keep_prob为训练时神经元节点保留概率

hidden_layer = tf.nn.dropout(hidden_layer, keep_prob)
1
2
3
4
用衰减学习率+多层神经网络改善模型性能: 
学习率使用指数衰减,前期使用较大学习率来加快得到最优解,越往后epoch使用越小的学习率,避免靠近最优点时出现震荡,更好寻优;
引入多层神经网络,加一层ReLU,将上一层的ReLU输出再进行一次加权组合,W1(feature*hidden_nodes_1),W2(hidden_nodes_1, hidden_nodes_2)和W3(hidden_nodes_2, num_labels)。
# tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)用法
# 参数:初始值learning_rate, global_step, decay_steps, 衰减率decay_rate, staircase=False
# decayed_learning_rate = learning_rate *
#                        decay_rate ^ (global_step / decay_steps)
# (staircase置True时,global_step/decay_steps为整除)
# 每过一次decay_steps轮,衰减率乘一次decay_rate实现衰减

global_step = tf.Variable(0)  # count the number of steps taken.
learning_rate = tf.train.exponential_decay(0.5, global_step, 500, 0.6, staircase=True) 
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)

第三章作业主要是学会处理神经网络的过拟合:

引入正则化来缓解过拟合:用tf.nn.l2_loss()计算模型参数的L2范数,加入到loss中,具体如下:

loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) + lmbda * (tf.nn.l2_loss(weights[0]) + tf.nn.l2_loss(weights[1])) # ==> add regularization

# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
1
2
3
4
5
用较大的minibatch样本数缓解过拟合:在用较小的minbatch样本训练会出现过拟合,即验证集达到100%准确率,但测试集准确率不高

引入dropout来缓解过拟合:用tf.nn.dropout(keep_prob)在神经网络的训练中引入dropout,指定keep_prob,具体如下:

# tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)用法
# 参数:训练样本x,keep_prob为训练时神经元节点保留概率

hidden_layer = tf.nn.dropout(hidden_layer, keep_prob)

用衰减学习率+多层神经网络改善模型性能:
学习率使用指数衰减,前期使用较大学习率来加快得到最优解,越往后epoch使用越小的学习率,避免靠近最优点时出现震荡,更好寻优;
引入多层神经网络,加两层ReLU,将上一层的ReLU输出再进行一次加权组合,W1(feature*hidden_nodes_1),W2(hidden_nodes_1, hidden_nodes_2), W3(hidden_nodes_2, hidden_nodes_3), 和W4(hidden_nodes_3, num_labels)。

# tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)用法
# 参数:初始值learning_rate, global_step, decay_steps, 衰减率decay_rate, staircase=False
# decayed_learning_rate = learning_rate *
#                        decay_rate ^ (global_step / decay_steps)
# (staircase置True时,global_step/decay_steps为整除)
# 每过一次decay_steps轮,衰减率乘一次decay_rate实现衰减

global_step = tf.Variable(0)  # count the number of steps taken.
learning_rate = tf.train.exponential_decay(0.5, global_step, 500, 0.6, staircase=True) 
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
def computation(dataset, weights, biases, is_dropout=False): 
    weight_sum_1 = tf.matmul(dataset, weights[0])+ biases[0]
    hidden_layer_1 = tf.nn.relu(weight_sum_1)
    if is_dropout:
        hidden_layer_1 = tf.nn.dropout(hidden_layer_1, keep_prob=0.7)
    weight_sum_2 = tf.matmul(hidden_layer_1, weights[1]) + biases[1]
    hidden_layer_2 = tf.nn.relu(weight_sum_2)
    if is_dropout:
        hidden_layer_2 = tf.nn.dropout(hidden_layer_2, keep_prob=0.7)
    weight_sum_3 = tf.matmul(hidden_layer_2, weights[2]) + biases[2]
    hidden_layer_3 = tf.nn.relu(weight_sum_3)
    if is_dropout:
        hidden_layer_3 = tf.nn.dropout(hidden_layer_3, keep_prob=0.7)
    outputs = tf.matmul(hidden_layer_3, weights[3]) + biases[3]
    return outputs

条理清晰,转自http://blog.csdn.net/draco_mystack/article/details/77418043

猜你喜欢

转载自blog.csdn.net/zsz_shsf/article/details/78935534