WLAN从入门到精通(阅读总结)

WLAN从入门到精通系列文章可见:
https://wenku.baidu.com/view/c34d5e1fe97101f69e3143323968011ca300f770.html

http://support.huawei.com/huaweiconnect/enterprise/zh/thread-282749.html

WLAN定义和基本框架

WLAN基本架构

WLAN有两种基本架构,一种是FAT AP架构,又叫自治式网络架构。一种是AC FIT AP架构,又叫集中式网络架构。

我们先从最熟悉的家庭无线路由器入手,家庭无线路由器采用的是FAT AP架构,即自治式网络架构。FAT AP英文全称是FAT Access Point,中文称为胖接入点,也有很多人直接称为胖AP。FAT AP不仅可以发射射频提供无线信号供无线终端接入,还能独立完成安全加密、用户认证和用户管理等管控功能。想一下我们家里的无线路由器,我们可以为WLAN设置密码,可以配置黑名单或白名单控制用户接入,还可以管理接入的用户(如设置用户的接入速率)等,这些都符合FAT AP的特征。所以,家庭使用的无线路由器就是一种FAT AP。下面的组网图是一个简单的基于FAT AP架构的组网应用。
这里写图片描述
FAT AP功能强大,独立性强,具备自治能力,因此FAT AP架构人们又称为自治式网络架构。不需要介入专门的管控设备,独自就可以完成无线用户的接入,业务数据的加密和业务数据报文的转发等功能。

独立自治是FAT AP的特点,也是FAT AP的缺点。当单个部署时,由于FAT AP具备较好的独立性,不需要另外部署管控设备,部署起来很方便,成本也较低廉,在类如家庭WLAN或者小企业WLAN的使用场景中,FAT AP往往是最适合的选择。给我们感受最深刻的就是我们在家里使用一个无线路由器就能享受WLAN带给我们的便捷。但是,在大的使用场景中,如我们上面提到的候车厅,FAT AP的独立自治就变成了自身的缺点。由于WLAN覆盖面积较大,接入用户较多,需要部署许多FAT AP设备,而每个FAT AP又是独立自治的,缺少统一的管控设备,管理这些设备就变得十分麻烦。不说别的,光为这些FAT AP升一次级就是一场灾难。所以,在大量部署的情况下,FAT AP会带来巨大的管理维护成本。而且由于独自控制用户的接入,FAT AP无法解决用户的漫游问题。一般在中大型使用场景中人们往往不会选择FAT AP架构,而是使用我们下面要讲的AC FIT AP架构。

FIT AP英文全称是FIT Access Point,中文称为瘦接入点,也有很多人直接称为瘦AP。和胖AP不同,瘦AP除了提供无线射频信号外,基本不具备管控功能。也正是因为这一点,它被称为瘦AP,而上面具备管控功能的AP被称为了胖AP。为了实现WLAN的功能,除了FIT AP外,还需要具备管理控制功能的设备——AC。AC英文全称是Access Controller,中文称为无线接入控制器。AC的主要功能是对WLAN中的所有FIT AP进行管理和控制,AC不具备射频(AC只是管理控制设备,不能发射无线射频信号),它和FIT AP配合共同完成WLAN功能。这种架构就被称为了AC FIT AP架构。
下图为某大型企业基于AC FIT AP架构部署的WLAN组网示意图。
这里写图片描述
由上图我们可以看到,根据AC所管控的区域和吞吐量的不同,AC可以出现在汇聚层,也可以出现在核心层。而FIT AP一般部署在接入层和企业分支。这种层级分明的协同分工,更能体现出AC FIT AP架构的集中控制的特点,这种架构又被大家称为集中式网络架构。

使用AC FIT AP架构为像候车厅这种大型场所部署WLAN时,比使用FAT AP架构更经济、高效。在AC FIT AP架构下,可以统一为FIT AP下发配置,统一为FIT AP进行软件升级,还可以按照时段控制FIT AP的工作数量等等,这些大大降低了WLAN的管控和维护的成本。而且,由于用户的接入认证可以由AC统一管理,解决用户漫游的问题就变得很容易。

综上所述,AC FIT AP架构适用于中大型使用场景,而FAT AP架构适用于小型使用场景。

WLAN射频和信道

射频

WLAN使用的射频频率范围是2.4GHz频段(2.4GHz~2.4835GHz)和5GHz频段(频率范围是5.150GHz~5.350GHz和5.725GHz~5.850GHz),分别属于特高频(300MHz~3GHz)和超高频(3GHz~30GHz)。

WLAN使用的2.4GHz频段和5GHz频段属于ISM频段。ISM,即工业(Industrial)、科学(Scientific)与医疗(Medical)。ISM频段主要开放给工业、科学、医疗三个机构使用,只要设备的功率符合限制,不需要申请许可证(Free License)即可使用这些频段,大大方便了WLAN的应用和推广。

信道

在WLAN标准协议里将2.4GHz频段划分出13个相互交叠的信道,每个信道的频宽是20MHz(802.11g、802.11n每个信道占用20MHz,802.11b每个信道占用22MHz),每个信道都有自己的中心频率。

14信道是特别针对日本定义的,各个国家2.4GHz频段开放的信道不一样,北美地区(美国,加拿大)开放1~11信道,欧洲开放1~13信道,中国同样开放1~13信道。一般,我们更多的讲述是2.4GHz频段分13个相互交叠的信道。

扫描二维码关注公众号,回复: 2169885 查看本文章

这13个信道可以找出3个独立信道,即没有相互交叠的信道。独立信道由于没有频率的交叠区,相邻AP使用这3个独立信道不会彼此产生干扰。如下图中的1、6、11就是三个互不交叠的独立信道。
这里写图片描述
这里写图片描述
在部署WLAN时,为避免相邻AP产生同频干扰,多采用蜂窝式信道布局。蜂窝式布局中相邻AP间使用不交叠的独立信道,可以有效避免同频干扰。
这里写图片描述

信道与射频调优

不同厂家的AP产品在出厂时会设定一个默认的信道,如果用户在部署WLAN时忘了配置信道,可能会造成某些AP覆盖重合的区域产生同频干扰,使用户无法上线。但是,为众多AP配置信道也是件很累人的事情,有些产品支持射频信道的自动模式。AP上线后,AC会根据AP周围的无线环境,自动为AP射频设置信道,避免了用户为多个AP配置信道的繁杂工作。

某些AP产品还支持射频调优功能,可以根据射频周围的无线环境自动调整信道和发射功率,保持整个无线网络处于一个最佳的状态。在WLAN初次部署完成后,建议执行一次射频调优。比如周围的卖场也有WLAN,很可能会和我们自己部署的WLAN有部分区域的射频冲突,射频调优可以让WLAN自己根据无线环境调整信道部署和发射功率,减少射频的冲突。而且无线环境可能是变化的,在低峰时段执行定期的射频调优也是有必要的。

5G频段

WLAN 可以使用的另一个频段——5GHz频段,有更高的频率和频宽,可以提供更高的速率和更小的信道干扰。WLAN标准协议将5GHz频段分为24个20MHz宽的信道,且每个信道都为独立信道。这为WLAN提供了丰富的信道资源,更多的独立信道也使得信道绑定更有价值,信道绑定是将两个信道绑定成一个信道使用,能提供更大的带宽。如两个20MHz的独立信道绑定在一起可以获得20MHz两倍的吞吐量,这好比将两条道路合并成一条使用,自然就提高了道路的通过能力。

802.11n支持通过将相邻的两个20MHz信道绑定成40MHz,使传输速率成倍提高。802.11n也同时定义了2.4GHz频段的信道绑定,但由于2.4GHz频段较拥挤的信道资源,降低了2.4GHz频段信道绑定的实用性,一般不推荐使用2.4GHz频段的信道绑定。
下图为5GHz频段的信道划分情况。
这里写图片描述
图中,黑色的半圆表示独立信道,红色的半圆表示标准协议推荐的信道绑定,UNII-2e为5GHz新增频段,该频段中国尚未放开使用。目前中国已放开使用的信道有36, 40, 44, 48, 52, 56, 60, 64, 149, 153, 157, 161, 165。

5GHz频段并非只有WLAN设备在使用,很多国家的军用雷达也在使用5GHz频段,使用该频段的民用无线设备很可能对雷达等重要设施产生干扰。为了解决这一安全顾虑,在一些国家出售的WLAN产品必须具备TPS和DFS这两个功能,即发射功率控制和动态频率选择。TPS是为了防止无线产品发放过大的功率来干扰军方雷达。DFS是为了使无线产品能主动探测军方使用的频率,如频率冲突并主动选择另一个频率,以避开军方频率。在这些国家这两个功能是属于强制性的,不符合标准的产品将不会获得这些国家的上市许可。

dBm和dB

dBm的含义是分贝毫瓦,通俗的说就是每1毫瓦产生多少分贝能量。
dBm和毫瓦的换算关系是:P(dBm)=10logP(mW),也就是100mW=10Log100=20dBm。

dB是个相对值是增益的意思(dB没有单位),X (dBm) - Y (dBm) = Z (dB)。
由dBm的公式可知及公式logA-logB = logA/B可知。两个功率之间的比值,在进行一个换算,即为dB。如10dB=20dBm-10dBm。

大家可以牢记一个规律,就是功率减少10倍,换算出来的dBm降低10dB。功率减少一半,换算出来的dBm降低3dB。如:50mW=17dBm,25mW=14dBm,5mW=7dBm。

WLAN标准协议

802.11a与802.11b

IEEE在1999年推出了802.11a和802.11b。
802.11a工作在5GHz的ISM频段上,并且选择了正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)技术,能有效降低多路径衰减的影响和提高频谱的利用率,使802.11a的物理层速率可达54Mbps。
802.11b工作在2.4GHz的ISM频段,但在802.11的基础上进行了技术改进(仍使用DSSS(扩展频谱)技术),使802.11b的通信速率达到11Mbps。

OFMD是一种多载波调制技术,主要是将指定信道分成若干子信道,在每个子信道上使用一个子载波进行调制,并且各子载波是并行传输,可以有效提高信道的频谱利用率。
虽然802.11b提供的接入速率比802.11a低,但当时5GHz芯片研制过慢,待芯片推出时802.11b已被广泛应用。由于802.11a不能兼容802.11b,再加上5GHz芯片价格较高和地方规定的限制等原因,使得802.11a没有被广泛采用。

802.11g

在2000年初,IEEE 802.11g工作组开始开发一项既能提供54Mbps速率,又能向下兼容802.11b的协议标准。并在2001年11月提出了第一个IEEE 802.11g草案,该草案在2003年正式成为标准。802.11g兼容了802.11b,继续使用2.4GHz频段。为了达到54Mbps的速率,802.11g借用了802.11a的成果,在2.4GHz频段采用了正交频分复用(OFDM)技术。IEEE 802.11g的推出,满足了当时人们对带宽的需求,对WLAN的发展起到了极大的推动作用。

大家可能会有疑问:为什么不在1999年制定802.11b标准时就直接采用和802.11a相同的OFDM技术,这样就可以更早的在2.4GHz频段上取得54Mbps的速率了,而不必等到2001年底的802.11g的出现。事实上在1999年讨论802.11b的时候,OFDM技术确实被提出应用到802.11b标准中,但当时美国联邦通信协会(FCC)禁止在2.4GHz频段使用OFDM,这条禁令直到2001年5月才被撤销,6个月后,采用OFDM技术的802.11g草案才得以顺利出台。

802.11n与802.11ac

在2002年一个新的IEEE工作组——IEEE 802.11任务组N即TGn(Task Group n)成立,开始研究一种更快的WLAN技术,目标是达到100Mbps的速率。该目标的实现一波三折,由于小组内两个阵营对协议标准的争论不休,新的协议直到2009年9月才被敲定并批准,这个协议就是802.11n。在长达7年的制定过程中,802.11n的速率也从最初设计的100Mbps,完善到了最高可达600Mbps,802.11n采用了双频工作模式,支持2.4GHz和5GHz,且兼容802.11a/b/g。

802.11n标准刚刚尘埃落定后, IEEE就开始了下一代的WLAN标准协议——802.11ac的制定工作。并在2013年正式推出了802.11ac标准协议,802.11ac工作在5GHz频段,向后兼容802.11n和802.11a,80.211ac沿用了802.11n的诸多技术并做了技术改进,使速率达到1.3Gbps。

802.11n详细介绍

802.11n较之前的标准协议主要有如下优势:更多的子载波、更高的编码率、更短的GI(Guard Interval)、更宽的信道、更多的空间流和MAC层的报文聚合功能等,而获取这些优势的技术802.11ac也有沿用。

更多的子载波

802.11n比802.11a/g多了4个有效子载波(802.11b没有使用OFMD技术不做对比),用户无需配置只要使用802.11n通信即可获得802.11n的此项优势。下图中58.5Mbps是802.11n较之前的标准更多的子载波可以带来的理论速率。
这里写图片描述

更高的编码率

WLAN使用射频传输数据时,除了用户的有效传输数据外,还需附有更错码FEC(Forward Error Correction),当有效数据在传递过程中因衰减、干扰等因素而导致数据错误时,通过更错码可将数据更正、还原成正确数据。802.11n将之前3/4的有效编码率提高到5/6,此项改进点使得802.11n的速率提升了11%。用户无需配置只要使用802.11n通信也可以直接获得802.11n的此项优势。
这里写图片描述

更短的GI(Short Guard Interval)

使用802.11a/b/g发送数据时,必须要保证在数据之间存在800 ns的时间间隔以避免数据帧间的干扰,这个间隔被称为Guard Interval (GI)。802.11n缺省仍然使用800ns的GI,但在空间环境较好时,可以将该间隔配置为400ns,此项改进可以将吞吐提高近10%(约72.2Mbps)。
这里需要注意,并不是所有的环境都适合配置short GI。在复杂的空间环境里,射频遇到障碍物可能会产生反射等现象,会造成AP和STA之间的多路径传输(多径效应)。在多径环境中,前一个数据块还没有发送完成,后一个数据块可能通过不同的路径先到达了,合理的GI长度能够避免相互干扰。如果GI时长不合理,会降低链路的使用效率。
这里写图片描述
所以,在复杂的环境中建议关闭short GI功能。

更多的空间流

802.11a/b/g技术的无线接入点和客户端是通过单个天线单个空间流以单入单出SISO(Single Input Single Output)的方式来实现数据传送的。在802.11n支持最大4个空间流的多入多出MIMO(Multiple Input and Multiple Output)方式传输数据(802.11ac最大支持8*8的MIMO)。
这里写图片描述

MAC层的报文聚合

在802.11的MAC层协议中,有很多固定的开销,尤其在两个帧之间的确认信息。在最高数据率的传输下,这些多余的开销甚至比需要传输的整个数据帧还要长。例如:802.11g理论传输速率为54Mbps,实际上却只有22Mbps,将近有一半多的速率浪费了。802.11n的MAC协议数据单元MPDU(MAC Protocol Data Unit)帧汇聚功能,可以将多个MPDU聚合为一个物理层报文,只需要进行一次信道竞争或退避,就可完成N个MPDU的同时发送,从而减少了发送N-1个MPDU报文所带来的信道资源消耗。802.11n的汇聚帧最大长度为65535字节。
这里写图片描述
802.11ac默认支持MPDU功能,且支持最大长度为1048575字节的汇聚帧。

另外,802.11ac还支持MAC服务数据单元MSDU(Mac Service Data Units)汇聚,大大提高了数据的传输效率。
这里写图片描述

WiFi

WiFi是无线保真(Wireless Fidelity)的英文缩写。在802.11b时代,虽然所有的802.11b产品都使用相同的802.11b标准,但为了保证不同厂商的产品能够具有良好的兼容性,1999年一些WLAN设备生产厂商一起成立了一个工业联盟——无线以太网兼容性联盟WECA(Wireless Ethernet Compatibility Alliance),后更名为Wi-Fi联盟。Wi-Fi联盟建立了一套验证802.11b产品兼容性的测试程序,称为Wi-Fi认证,通过该程序认证的产品可以使用Wi-Fi认证标签。后来,Wi-Fi认证的范围逐步扩展到802.11a,802.11g和802.11n。另外,由于忍受不了802.11n漫长的标准化进程和市场需求的推动,Wi-Fi联盟以802.11n 2.0版草案作为产品认证的依据,在802.11n标准推出之前已经认证批准了数百个802.11n产品。这也是为什么当时802.11n标准还未正式发布,而我们在市场上早已可以购买到各类兼容性良好的802.11n产品的原因。

WLAN常用概念

概念 全称 描述
BSS 基本服务集BSS(Basic Service Set) 无线网络的基本服务单元,通常由一个AP和若干无线终端组成。
ESS 扩展服务集ESS(Extend Service Set) 由多个使用相同SSID的BSS组成,解决BSS覆盖范围有限的问题。
SSID 服务集标识符SSID(Service Set Identifier) 用来区分不同的无线网络。
ESSID 扩展服务集标识符ESSID(Extended Service Set Identifier) 一个或一组无线网络的标识,和SSID是相同的。
BSSID 基本服务集标识符BSSID(Basic Service Set Identifier) 在链路层上用来区分同一个AP上的不同VAP,也可以用来区分同一个ESS中的BSS。
VAP 虚拟接入点VAP(Virtual Access Point) AP设备上虚拟出来的业务功能实体。用户可以在一个AP上创建不同的VAP来为不同的用户群体提供无线接入服务。

当BSSID用来标识BSS时,这个标识符是一个长度为48位的二进制标识符,通常是这个BSS里面AP的MAC地址。
当BSSID用来标识同一个AP上的不同VAP时,BSSID和物理AP的MAC地址是有某种影射关系的。

STA接入过程

可参考:
https://blog.csdn.net/hmxz2nn/article/details/79937344

WLAN安全策略

将单独介绍

猜你喜欢

转载自blog.csdn.net/hmxz2nn/article/details/79949336