Linux中的多路复用技术---epoll的详解

在linux 没有实现epoll事件驱动机制之前,我们一般选择用select或者poll等IO多路复用的方法来实现并发服务程序。在大数据、高并发、集群等一些名词唱得火热之年代,select和poll的用武之地越来越有限,风头已经被epoll占尽。

本文便来介绍epoll的实现机制,并附带讲解一下select和poll。通过对比其不同的实现机制,真正理解为何epoll能实现高并发。

select()和poll() IO多路复用模型

select的缺点:

  1. 单个进程能够监视的文件描述符的数量存在最大限制,通常是1024,当然可以更改数量,但由于select采用轮询的方式扫描文件描述符,文件描述符数量越多,性能越差;(在linux内核头文件中,有这样的定义:#define __FD_SETSIZE    1024)
  2. 内核 / 用户空间内存拷贝问题,select需要复制大量的句柄数据结构,产生巨大的开销;
  3. select返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件;
  4. select的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select调用还是会将这些文件描述符通知进程。

相比select模型,poll使用链表保存文件描述符,因此没有了监视文件数量的限制,但其他三个缺点依然存在。

拿select模型为例,假设我们的服务器需要支持100万的并发连接,则在__FD_SETSIZE 为1024的情况下,则我们至少需要开辟1k个进程才能实现100万的并发连接。除了进程间上下文切换的时间消耗外,从内核/用户空间大量的无脑内存拷贝、数组轮询等,是系统难以承受的。因此,基于select模型的服务器程序,要达到10万级别的并发访问,是一个很难完成的任务。

因此,该epoll上场了。

epoll IO多路复用模型实现机制

由于epoll的实现机制与select/poll机制完全不同,上面所说的 select的缺点在epoll上不复存在。

设想一下如下场景:有100万个客户端同时与一个服务器进程保持着TCP连接。而每一时刻,通常只有几百上千个TCP连接是活跃的(事实上大部分场景都是这种情况)。如何实现这样的高并发?

在select/poll时代,服务器进程每次都把这100万个连接告诉操作系统(从用户态复制句柄数据结构到内核态),让操作系统内核去查询这些套接字上是否有事件发生,轮询完后,再将句柄数据复制到用户态,让服务器应用程序轮询处理已发生的网络事件,这一过程资源消耗较大,因此,select/poll一般只能处理几千的并发连接。

epoll的设计和实现与select完全不同。epoll通过在Linux内核中申请一个简易的文件系统(文件系统一般用什么数据结构实现?B+树)。把原先的select/poll调用分成了3个部分:

1)调用epoll_create()建立一个epoll对象(在epoll文件系统中为这个句柄对象分配资源)

扫描二维码关注公众号,回复: 2191120 查看本文章

2)调用epoll_ctl向epoll对象中添加这100万个连接的套接字

3)调用epoll_wait收集发生的事件的连接

如此一来,要实现上面说是的场景,只需要在进程启动时建立一个epoll对象,然后在需要的时候向这个epoll对象中添加或者删除连接。同时,epoll_wait的效率也非常高,因为调用epoll_wait时,并没有一股脑的向操作系统复制这100万个连接的句柄数据,内核也不需要去遍历全部的连接。

下面来看看Linux内核具体的epoll机制实现思路。

当某一进程调用epoll_create方法时,Linux内核会创建一个eventpoll结构体,这个结构体中有两个成员与epoll的使用方式密切相关。eventpoll结构体如下所示:

  1. struct eventpoll{
  2. ....
  3. /*红黑树的根节点,这颗树中存储着所有添加到epoll中的需要监控的事件*/
  4. struct rb_root rbr;
  5. /*双链表中则存放着将要通过epoll_wait返回给用户的满足条件的事件*/
  6. struct list_head rdlist;
  7. ....
  8. };

每一个epoll对象都有一个独立的eventpoll结构体,用于存放通过epoll_ctl方法向epoll对象中添加进来的事件。这些事件都会挂载在红黑树中,如此,重复添加的事件就可以通过红黑树而高效的识别出来(红黑树的插入时间效率是lgn,其中n为树的高度)。

而所有添加到epoll中的事件都会与设备(网卡)驱动程序建立回调关系,也就是说,当相应的事件发生时会调用这个回调方法。这个回调方法在内核中叫ep_poll_callback,它会将发生的事件添加到rdlist双链表中。

在epoll中,对于每一个事件,都会建立一个epitem结构体,如下所示:

  1. struct epitem{
  2. struct rb_node rbn; //红黑树节点
  3. struct list_head rdllink; //双向链表节点
  4. struct epoll_filefd ffd; //事件句柄信息
  5. struct eventpoll *ep; //指向其所属的eventpoll对象
  6. struct epoll_event event; //期待发生的事件类型
  7. }

当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。

epoll.jpg

epoll数据结构示意图

从上面的讲解可知:通过红黑树和双链表数据结构,并结合回调机制,造就了epoll的高效。

OK,讲解完了Epoll的机理,我们便能很容易掌握epoll的用法了。一句话描述就是:三步曲。

第一步:epoll_create()系统调用。此调用返回一个句柄,之后所有的使用都依靠这个句柄来标识。

第二步:epoll_ctl()系统调用。通过此调用向epoll对象中添加、删除、修改感兴趣的事件,返回0标识成功,返回-1表示失败。

第三部:epoll_wait()系统调用。通过此调用收集收集在epoll监控中已经发生的事件。

最后,附上一个epoll编程实例。(作者为sparkliang)

  1. //
  2. // a simple echo server using epoll in linux
  3. //
  4. // 2009-11-05
  5. // 2013-03-22:修改了几个问题,1是/n格式问题,2是去掉了原代码不小心加上的ET模式;
  6. // 本来只是简单的示意程序,决定还是加上 recv/send时的buffer偏移
  7. // by sparkling
  8. //
  9. #include <sys/socket.h>
  10. #include <sys/epoll.h>
  11. #include <netinet/in.h>
  12. #include <arpa/inet.h>
  13. #include <fcntl.h>
  14. #include <unistd.h>
  15. #include <stdio.h>
  16. #include <errno.h>
  17. #include <iostream>
  18. using namespace std;
  19. #define MAX_EVENTS 500
  20. struct myevent_s
  21. {
  22. int fd;
  23. void (*call_back)( int fd, int events, void *arg);
  24. int events;
  25. void *arg;
  26. int status; // 1: in epoll wait list, 0 not in
  27. char buff[ 128]; // recv data buffer
  28. int len, s_offset;
  29. long last_active; // last active time
  30. };
  31. // set event
  32. void EventSet(myevent_s *ev, int fd, void (*call_back)(int, int, void*), void *arg)
  33. {
  34. ev->fd = fd;
  35. ev->call_back = call_back;
  36. ev->events = 0;
  37. ev->arg = arg;
  38. ev->status = 0;
  39. bzero(ev->buff, sizeof(ev->buff));
  40. ev->s_offset = 0;
  41. ev->len = 0;
  42. ev->last_active = time( NULL);
  43. }
  44. // add/mod an event to epoll
  45. void EventAdd(int epollFd, int events, myevent_s *ev)
  46. {
  47. struct epoll_event epv = { 0, { 0}};
  48. int op;
  49. epv.data.ptr = ev;
  50. epv.events = ev->events = events;
  51. if(ev->status == 1){
  52. op = EPOLL_CTL_MOD;
  53. }
  54. else{
  55. op = EPOLL_CTL_ADD;
  56. ev->status = 1;
  57. }
  58. if(epoll_ctl(epollFd, op, ev->fd, &epv) < 0)
  59. printf( "Event Add failed[fd=%d], evnets[%d]\n", ev->fd, events);
  60. else
  61. printf( "Event Add OK[fd=%d], op=%d, evnets[%0X]\n", ev->fd, op, events);
  62. }
  63. // delete an event from epoll
  64. void EventDel(int epollFd, myevent_s *ev)
  65. {
  66. struct epoll_event epv = { 0, { 0}};
  67. if(ev->status != 1) return;
  68. epv.data.ptr = ev;
  69. ev->status = 0;
  70. epoll_ctl(epollFd, EPOLL_CTL_DEL, ev->fd, &epv);
  71. }
  72. int g_epollFd;
  73. myevent_s g_Events[MAX_EVENTS+ 1]; // g_Events[MAX_EVENTS] is used by listen fd
  74. void RecvData(int fd, int events, void *arg);
  75. void SendData(int fd, int events, void *arg);
  76. // accept new connections from clients
  77. void AcceptConn(int fd, int events, void *arg)
  78. {
  79. struct sockaddr_in sin;
  80. socklen_t len = sizeof(struct sockaddr_in);
  81. int nfd, i;
  82. // accept
  83. if((nfd = accept(fd, (struct sockaddr*)& sin, &len)) == -1)
  84. {
  85. if(errno != EAGAIN && errno != EINTR)
  86. {
  87. }
  88. printf( "%s: accept, %d", __func__, errno);
  89. return;
  90. }
  91. do
  92. {
  93. for(i = 0; i < MAX_EVENTS; i++)
  94. {
  95. if(g_Events[i].status == 0)
  96. {
  97. break;
  98. }
  99. }
  100. if(i == MAX_EVENTS)
  101. {
  102. printf( "%s:max connection limit[%d].", __func__, MAX_EVENTS);
  103. break;
  104. }
  105. // set nonblocking
  106. int iret = 0;
  107. if((iret = fcntl(nfd, F_SETFL, O_NONBLOCK)) < 0)
  108. {
  109. printf( "%s: fcntl nonblocking failed:%d", __func__, iret);
  110. break;
  111. }
  112. // add a read event for receive data
  113. EventSet(&g_Events[i], nfd, RecvData, &g_Events[i]);
  114. EventAdd(g_epollFd, EPOLLIN, &g_Events[i]);
  115. } while( 0);
  116. printf( "new conn[%s:%d][time:%d], pos[%d]\n", inet_ntoa( sin.sin_addr),
  117. ntohs( sin.sin_port), g_Events[i].last_active, i);
  118. }
  119. // receive data
  120. void RecvData(int fd, int events, void *arg)
  121. {
  122. struct myevent_s *ev = (struct myevent_s*)arg;
  123. int len;
  124. // receive data
  125. len = recv(fd, ev->buff+ev->len, sizeof(ev->buff) -1-ev->len, 0);
  126. EventDel(g_epollFd, ev);
  127. if(len > 0)
  128. {
  129. ev->len += len;
  130. ev->buff[len] = '\0';
  131. printf( "C[%d]:%s\n", fd, ev->buff);
  132. // change to send event
  133. EventSet(ev, fd, SendData, ev);
  134. EventAdd(g_epollFd, EPOLLOUT, ev);
  135. }
  136. else if(len == 0)
  137. {
  138. close(ev->fd);
  139. printf( "[fd=%d] pos[%d], closed gracefully.\n", fd, ev-g_Events);
  140. }
  141. else
  142. {
  143. close(ev->fd);
  144. printf( "recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno));
  145. }
  146. }
  147. // send data
  148. void SendData(int fd, int events, void *arg)
  149. {
  150. struct myevent_s *ev = (struct myevent_s*)arg;
  151. int len;
  152. // send data
  153. len = send(fd, ev->buff + ev->s_offset, ev->len - ev->s_offset, 0);
  154. if(len > 0)
  155. {
  156. printf( "send[fd=%d], [%d<->%d]%s\n", fd, len, ev->len, ev->buff);
  157. ev->s_offset += len;
  158. if(ev->s_offset == ev->len)
  159. {
  160. // change to receive event
  161. EventDel(g_epollFd, ev);
  162. EventSet(ev, fd, RecvData, ev);
  163. EventAdd(g_epollFd, EPOLLIN, ev);
  164. }
  165. }
  166. else
  167. {
  168. close(ev->fd);
  169. EventDel(g_epollFd, ev);
  170. printf( "send[fd=%d] error[%d]\n", fd, errno);
  171. }
  172. }
  173. void InitListenSocket(int epollFd, short port)
  174. {
  175. int listenFd = socket(AF_INET, SOCK_STREAM, 0);
  176. fcntl(listenFd, F_SETFL, O_NONBLOCK); // set non-blocking
  177. printf( "server listen fd=%d\n", listenFd);
  178. EventSet(&g_Events[MAX_EVENTS], listenFd, AcceptConn, &g_Events[MAX_EVENTS]);
  179. // add listen socket
  180. EventAdd(epollFd, EPOLLIN, &g_Events[MAX_EVENTS]);
  181. // bind & listen
  182. sockaddr_in sin;
  183. bzero(& sin, sizeof( sin));
  184. sin.sin_family = AF_INET;
  185. sin.sin_addr.s_addr = INADDR_ANY;
  186. sin.sin_port = htons(port);
  187. bind(listenFd, ( const sockaddr*)& sin, sizeof( sin));
  188. listen(listenFd, 5);
  189. }
  190. int main(int argc, char **argv)
  191. {
  192. unsigned short port = 12345; // default port
  193. if(argc == 2){
  194. port = atoi(argv[ 1]);
  195. }
  196. // create epoll
  197. g_epollFd = epoll_create(MAX_EVENTS);
  198. if(g_epollFd <= 0) printf( "create epoll failed.%d\n", g_epollFd);
  199. // create & bind listen socket, and add to epoll, set non-blocking
  200. InitListenSocket(g_epollFd, port);
  201. // event loop
  202. struct epoll_event events[MAX_EVENTS];
  203. printf( "server running:port[%d]\n", port);
  204. int checkPos = 0;
  205. while( 1){
  206. // a simple timeout check here, every time 100, better to use a mini-heap, and add timer event
  207. long now = time( NULL);
  208. for( int i = 0; i < 100; i++, checkPos++) // doesn't check listen fd
  209. {
  210. if(checkPos == MAX_EVENTS) checkPos = 0; // recycle
  211. if(g_Events[checkPos].status != 1) continue;
  212. long duration = now - g_Events[checkPos].last_active;
  213. if(duration >= 60) // 60s timeout
  214. {
  215. close(g_Events[checkPos].fd);
  216. printf( "[fd=%d] timeout[%d--%d].\n", g_Events[checkPos].fd, g_Events[checkPos].last_active, now);
  217. EventDel(g_epollFd, &g_Events[checkPos]);
  218. }
  219. }
  220. // wait for events to happen
  221. int fds = epoll_wait(g_epollFd, events, MAX_EVENTS, 1000);
  222. if(fds < 0){
  223. printf( "epoll_wait error, exit\n");
  224. break;
  225. }
  226. for( int i = 0; i < fds; i++){
  227. myevent_s *ev = (struct myevent_s*)events[i].data.ptr;
  228. if((events[i].events&EPOLLIN)&&(ev->events&EPOLLIN)) // read event
  229. {
  230. ev->call_back(ev->fd, events[i].events, ev->arg);
  231. }
  232. if((events[i].events&EPOLLOUT)&&(ev->events&EPOLLOUT)) // write event
  233. {
  234. ev->call_back(ev->fd, events[i].events, ev->arg);
  235. }
  236. }
  237. }
  238. // free resource
  239. return 0;

猜你喜欢

转载自blog.csdn.net/wyz0516071128/article/details/81058898
今日推荐