机器学习之线性代数

1.协方差和协方差矩阵的概念公式

1.1协方差公式

1.2协方差矩阵公式

有数据集={X,Y,Z},是三维度的数据,即此此数据集中的样例有3个特征


"""
Aim:计算两个维度的协方差covariance
"""
 
import numpy as np
 
class CCovariance(object):
    '''计算X,Y这俩维度的协方差
    '''
    def __init__(self, X, Y):
        self.X = X
        self.Y = Y
        
        self.Covariance_way1()
        self.Covariance_way2()
        self.Covariance_way3()
        
    def Covariance_way1(self):
        '''
        协方差公式法计算两个等长向量的协方差convariance
        '''
        X,Y = np.array(self.X), np.array(self.Y)
        meanX, meanY = np.mean(X), np.mean(Y)
        n = np.shape(X)[0]
        #按照协方差公式计算协方差,Note:分母一定是n-1
        covariance = sum(np.multiply(X-meanX, Y-meanY))/(n-1)
        print('协方差公式法求得的协方差:', covariance)
        return covariance
        
    def Covariance_way2(self):
        '''
        向量中心化方法计算两个等长向量的协方差convariance
        '''
        X,Y = np.array(self.X),np.array(self.Y)
        n = np.shape(X)[0]
        centrX = X-np.mean(X)
        centrY = Y-np.mean(Y)
        convariance = sum(np.multiply(centrX, centrY))/(n-1)
        print('向量中心化方法求得协方差:', convariance)
        return convariance
        
    def Covariance_way3(self):
        '''
        numpy.conv(X,Y)提供的协方差函数求协方差
        '''
        conv = np.cov(self.X, self.Y)
        print('np.cov(X,Y)求得的X的方差:', conv[0,0])
        print('np.cov(X,Y)求得的Y的方差:', conv[1,1])
        print('np.cov(X,Y)求得的X和Y的协方差:',conv[0,1])
        
if __name__=='__main__':
    X = [10,15,23,11,42,9,11,8,11,21]
    Y = [15,46,21,9,45,48,21,5,12,20]
    c = CCovariance(X,Y)

协方差矩阵的多种求解Python实现

"""
Aim:计算一个多维度样本的协方差矩阵covariance matrix
Note:协方差矩阵是计算的样本中每个特征之间的协方差,所以协方差矩阵是特征个数阶的对称阵
"""
 
import numpy as np
 
class CCovMat(object):
    '''计算多维度样本集的协方差矩阵
    Note:请保证输入的样本集m×n,m行样例,每个样例n个特征
    '''
    def __init__(self, samples):
        #样本集shpae=(m,n),m是样本总数,n是样本的特征个数
        self.samples = samples
        self.covmat1 = [] #保存方法1求得的协方差矩阵
        self.covmat2 = [] #保存方法1求得的协方差矩阵
        
        #用方法1计算协方差矩阵
        self._calc_covmat1()
        #用方法2计算协方差矩阵
        self._calc_covmat2()
        
    def _covariance(self, X, Y):
        '''
        计算两个等长向量的协方差convariance
        '''
        n = np.shape(X)[0]
        X, Y = np.array(X), np.array(Y)
        meanX, meanY = np.mean(X), np.mean(Y)
        #按照协方差公式计算协方差,Note:分母一定是n-1
        cov = sum(np.multiply(X-meanX, Y-meanY))/(n-1)
        return cov
        
    def _calc_covmat1(self):
        '''
        方法1:根据协方差公式和协方差矩阵的概念计算协方差矩阵
        '''
        S = self.samples #样本集
        na = np.shape(S)[1] #特征attr总数
        self.covmat1 = np.full((na, na), fill_value=0.) #保存协方差矩阵
        for i in range(na):
            for j in range(na):
                self.covmat1[i,j] = self._covariance(S[:,i], S[:,j])
        return self.covmat1
        
    def _calc_covmat2(self):
        '''
        方法2:先样本集中心化再求协方差矩阵
        '''
        S = self.samples #样本集
        ns = np.shape(S)[0] #样例总数
        mean = np.array([np.mean(attr) for attr in S.T]) #样本集的特征均值
        print('样本集的特征均值:\n',mean)
        centrS = S - mean ##样本集的中心化
        print('样本集的中心化(每个元素将去当前维度特征的均值):\n', centrS)
        #求协方差矩阵
        self.covmat2 = np.dot(centrS.T, centrS)/(ns - 1)
        return self.covmat2
        
    def CovMat1(self):
        return self.covmat1
        
    def CovMat2(self):
        return self.covmat2
        
if __name__=='__main__':
    '10样本3特征的样本集'
    samples = np.array([[10, 15, 29],
                        [15, 46, 13],
                        [23, 21, 30],
                        [11, 9,  35],
                        [42, 45, 11],
                        [9,  48, 5],
                        [11, 21, 14],
                        [8,  5,  15],
                        [11, 12, 21],
                        [21, 20, 25]])
    cm = CCovMat(samples)
    
    print('样本集(10行3列,10个样例,每个样例3个特征):\n', samples)
    print('按照协方差公式求得的协方差矩阵:\n', cm.CovMat1())
    print('按照样本集的中心化求得的协方差矩阵:\n', cm.CovMat1())
    print('numpy.cov()计算的协方差矩阵:\n', np.cov(samples.T))

猜你喜欢

转载自blog.csdn.net/wangdong2017/article/details/81311387