Java并发编程(十)------ReentrantLock重入锁

1. Lock接口

1.1 Lock和synchronized的区别

锁是用来控制多个线程访问共享资源的方式,一般来说,一个锁能够防止多个线程同时访问共享资源(但是有些锁可以允许多个线程并发的访问共享资源,比如读写锁)。

在Lock接口出现之前,Java程序是靠synchronized关键字实现锁功能的,而Java 5之后,并发包中新增了Lock接口(以及相关实现类)用来实现锁功能,它提供了与synchronized关键字类似的同步功能,只是在使用时需要显式地获取和释放锁。虽然它缺少了(通过synchronized块或者方法所提供的)隐式获取释放锁的便捷性,但是却拥有了锁获取与释放的可操作性、可中断的获取锁以及超时获取锁等多种synchronized关键字所不具备的同步特性。

使用synchronized关键字将会隐式地获取锁,所以它将锁的获取和释放固化了,也就是先获取再释放。当然,这种方式简化了同步的管理,可是扩展性没有显示的锁获取和释放来的好。例如,针对一个场景,手把手进行锁获取和释放,先获得锁A,然后再获取锁B,当锁B获得后,释放锁A同时获取锁C,当锁C获得后,再释放B同时获取锁D,以此类推。这种场景下,synchronized关键字就不那么容易实现了,而使用Lock却容易许多。

Lock接口提供synchronized关键字所不具备的主要特性有:

1.2 Lock的使用方法

Lock的使用很简单

Lock lock = new ReentrantLock();
lock.lock();
try {
} finally {
    lock.unlock();
}

在finally块中释放锁,目的是保证在获取到锁之后,最终能够被释放。不要将获取锁的过程写在try块中,因为如果在获取锁(自定义锁的实现)时发生了异常,异常抛出的同时,也会导致锁无故释放
 

2. ReentrantLock重入锁

ReentrantLock感觉上是synchronized的增强版,synchronized的特点是使用简单,一切交给JVM去处理,但是功能上是比较薄弱的。在JDK1.5之前,ReentrantLock的性能要好于synchronized,由于对JVM进行了优化,现在的JDK版本中,两者性能是不相上下的。如果是简单的实现,不要刻意去使用ReentrantLock。

相比于synchronized,ReentrantLock在功能上更加丰富,它具有可重入、可中断、可限时、公平锁等特点。

首先我们通过一个例子来说明ReentrantLock最初步的用法:

package test;

import java.util.concurrent.locks.ReentrantLock;

public class Test implements Runnable
{
	public static ReentrantLock lock = new ReentrantLock();
	public static int i = 0;

	@Override
	public void run()
	{
		for (int j = 0; j < 10000000; j++)
		{
			lock.lock();
			try
			{
				i++;
			}
			finally
			{
				lock.unlock();
			}
		}
	}
	
	public static void main(String[] args) throws InterruptedException
	{
		Test test = new Test();
		Thread t1 = new Thread(test);
		Thread t2 = new Thread(test);
		t1.start();
		t2.start();
		t1.join();
		t2.join();
		System.out.println(i);
	}

}

有两个线程都对i进行++操作,为了保证线程安全,使用了ReentrantLock,从用法上可以看出,与 synchronized相比,ReentrantLock就稍微复杂一点。因为必须在finally中进行解锁操作,如果不在 finally解锁,有可能代码出现异常锁没被释放,而synchronized是由JVM来释放锁。

那么ReentrantLock到底有哪些优秀的特点呢?

2.1 可重入

单线程可以重复进入,但要重复退出

lock.lock();
lock.lock();
try
{
	i++;
			
}			
finally
{
	lock.unlock();
	lock.unlock();
}

由于ReentrantLock是重入锁,所以可以反复得到相同的一把锁,它有一个与锁相关的获取计数器,如果拥有锁的某个线程再次得到锁,那么获取计数器就加1,然后锁需要被释放两次才能获得真正释放(重入锁)。这模仿了 synchronized 的语义;如果线程进入由线程已经拥有的监控器保护的 synchronized 块,就允许线程继续进行,当线程退出第二个(或者后续) synchronized 块的时候,不释放锁,只有线程退出它进入的监控器保护的第一个synchronized 块时,才释放锁。

public class Child extends Father implements Runnable{
    final static Child child = new Child();//为了保证锁唯一
    public static void main(String[] args) {
        for (int i = 0; i < 50; i++) {
            new Thread(child).start();
        }
    }
 
    public synchronized void doSomething() {
        System.out.println("1child.doSomething()");
        doAnotherThing(); // 调用自己类中其他的synchronized方法
    }
 
    private synchronized void doAnotherThing() {
        super.doSomething(); // 调用父类的synchronized方法
        System.out.println("3child.doAnotherThing()");
    }
 
    @Override
    public void run() {
        child.doSomething();
    }
}
class Father {
    public synchronized void doSomething() {
        System.out.println("2father.doSomething()");
    }
}

我们可以看到一个线程进入不同的 synchronized方法,是不会释放之前得到的锁的。所以输出还是顺序输出。所以synchronized也是重入锁

输出:

1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
1child.doSomething()
2father.doSomething()
3child.doAnotherThing()
...

2.2 可中断

与synchronized不同的是,ReentrantLock对中断是有响应的。普通的lock.lock()是不能响应中断的,lock.lockInterruptibly()能够响应中断。

我们模拟出一个死锁现场,然后用中断来处理死锁

package test;

import java.lang.management.ManagementFactory;
import java.lang.management.ThreadInfo;
import java.lang.management.ThreadMXBean;
import java.util.concurrent.locks.ReentrantLock;

public class Test implements Runnable
{
	public static ReentrantLock lock1 = new ReentrantLock();
	public static ReentrantLock lock2 = new ReentrantLock();

	int lock;

	public Test(int lock)
	{
		this.lock = lock;
	}

	@Override
	public void run()
	{
		try
		{
			if (lock == 1)
			{
				lock1.lockInterruptibly();
				try
				{
					Thread.sleep(500);
				}
				catch (Exception e)
				{
					// TODO: handle exception
				}
				lock2.lockInterruptibly();
			}
			else
			{
				lock2.lockInterruptibly();
				try
				{
					Thread.sleep(500);
				}
				catch (Exception e)
				{
					// TODO: handle exception
				}
				lock1.lockInterruptibly();
			}
		}
		catch (Exception e)
		{
			// TODO: handle exception
		}
		finally
		{
			if (lock1.isHeldByCurrentThread())
			{
				lock1.unlock();
			}
			if (lock2.isHeldByCurrentThread())
			{
				lock2.unlock();
			}
			System.out.println(Thread.currentThread().getId() + ":线程退出");
		}
	}

	public static void main(String[] args) throws InterruptedException
	{
		Test t1 = new Test(1);
		Test t2 = new Test(2);
		Thread thread1 = new Thread(t1);
		Thread thread2 = new Thread(t2);
		thread1.start();
		thread2.start();
		Thread.sleep(1000);
		//DeadlockChecker.check();
	}

	static class DeadlockChecker
	{
		private final static ThreadMXBean mbean = ManagementFactory
				.getThreadMXBean();
		final static Runnable deadlockChecker = new Runnable()
		{
			@Override
			public void run()
			{
				// TODO Auto-generated method stub
				while (true)
				{
					long[] deadlockedThreadIds = mbean.findDeadlockedThreads();
					if (deadlockedThreadIds != null)
					{
						ThreadInfo[] threadInfos = mbean.getThreadInfo(deadlockedThreadIds);
						for (Thread t : Thread.getAllStackTraces().keySet())
						{
							for (int i = 0; i < threadInfos.length; i++)
							{
								if(t.getId() == threadInfos[i].getThreadId())
								{
									t.interrupt();
								}
							}
						}
					}
					try
					{
						Thread.sleep(5000);
					}
					catch (Exception e)
					{
						// TODO: handle exception
					}
				}

			}
		};
		
		public static void check()
		{
			Thread t = new Thread(deadlockChecker);
			t.setDaemon(true);
			t.start();
		}
	}

}

上述代码有可能会发生死锁,线程1得到lock1,线程2得到lock2,然后彼此又想获得对方的锁。

我们用jstack查看运行上述代码后的情况

的确发现了一个死锁。

DeadlockChecker.check();方法用来检测死锁,然后把死锁的线程中断。中断后,线程正常退出。

2.3 可限时

超时不能获得锁,就返回false,不会永久等待构成死锁

使用lock.tryLock(long timeout, TimeUnit unit)来实现可限时锁,参数为时间和单位。

举个例子来说明下可限时:

package test;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

public class Test implements Runnable
{
	public static ReentrantLock lock = new ReentrantLock();

	@Override
	public void run()
	{
		try
		{
			if (lock.tryLock(5, TimeUnit.SECONDS))
			{
				Thread.sleep(6000);
			}
			else
			{
				System.out.println("get lock failed");
			}
		}
		catch (Exception e)
		{
		}
		finally
		{
			if (lock.isHeldByCurrentThread())
			{
				lock.unlock();
			}
		}
	}
	
	public static void main(String[] args)
	{
		Test t = new Test();
		Thread t1 = new Thread(t);
		Thread t2 = new Thread(t);
		t1.start();
		t2.start();
	}

}

使用两个线程来争夺一把锁,当某个线程获得锁后,sleep6秒,每个线程都只尝试5秒去获得锁。所以必定有一个线程无法获得锁。无法获得后就直接退出了。

输出:

get lock failed

2.4 公平锁

公平锁的意思就是,这个锁能保证线程是先来的先得到锁。虽然公平锁不会产生饥饿现象,但是公平锁的性能会比非公平锁差很多。公平性与否是针对获取锁而言的,如果一个锁是公平的,那么锁的获取顺序就应该符合请求的绝对时间顺序,也就是FIFO。

使用方式:

public ReentrantLock(boolean fair) 

public static ReentrantLock fairLock = new ReentrantLock(true);

一般意义上的锁是不公平的,不一定先来的线程能先得到锁,后来的线程就后得到锁。

不公平的锁可能会产生饥饿现象。

猜你喜欢

转载自blog.csdn.net/DjokerMax/article/details/81325539
今日推荐