分布式架构(二)TCP/IP协议

分布式架构(二)TCP/IP协议

说到通信协议不得不提OSI七层协议和TCP/IP四层协议

这里写图片描述

OSI(Open System Interconnection,开放系统互连)七层网络模型称为开放式系统互联参考模型 ,是一个逻辑上的定义,一个规范,它把网络从逻辑上分为了7层。每一层都有相关、相对应的物理设备,比如路由器,交换机。

OSI七层模型是一种框架性的设计方法,建立七层模型的主要目的是:
解决异种网络互连时所遇到的兼容性问题,
帮助不同类型的主机实现数据传输,
将服务、接口和协议这三个概念明确地区分开来,
通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯。

ISO制定的OSI参考模型的过于庞大、复杂招致了许多批评。与此对照,由技术人员自己开发的TCP/IP协议栈获得了更为广泛的应用。
TCP/IP四层的每一层作用:

所在层 作用
物理层 实际上TCP/IP参考模型没有真正描述这一层的实现,只是要求能够提供给其上层-网络互连层一个访问接口,以便在其上传递IP分组。由于这一层次未被定义,所以其具体的实现方法将随着网络类型的不同而不同。
网络层 TCP/IP的核心层,把分组发往目标网络或主机。同时,为了尽快地发送分组,可能需要沿不同的路径同时进行分组传递。因此,分组到达的顺序和发送的顺序可能不同,这就需要上层必须对分组进行排序,具体怎么分组就是ip协议了,除了上面分组路由,还要完成网络拥塞控制
传输层 使源端主机和目标端主机上的对等实体可以进行会话。它定义了两种服务质量不同的协议:传输控制协议TCP/用户数据报协议UDP
应用层 TCP/IP模型将OSI参考模型中的会话层和表示层的功能合并到应用层实现。应用层面向不同的网络应用引入了不同的应用层协议。其中,有基于TCP协议的,如文件传输协议(File Transfer Protocol,FTP)、虚拟终端协议(TELNET)、超文本链接协议(Hyper Text Transfer Protocol,HTTP),也有基于UDP协议的。

我们一直说协议,那协议到是怎么个样子,来几张感性的图(图片来自网络):
报文的整体结构:
一个报文的结构

IP头报文
ip报文
报文中包含源地址和目标地址吧 就是源IP和目标IP,能定位到你的服务器

TCP数据报文
tcp数据报文
报文中包含源端口和目标端口,能定位到某个进程 比如你的tomcat进程

TCP是一种可靠的、面向连接的字节流服务。
源主机在传送数据前需要先和目标主机建立连接。
在此连接上,被编号的数据段按序收发。同时,要求对每个数据段进行确认,保证了可靠性。
如果在指定的时间内没有收到目标主机对所发数据段的确认,源主机将再次发送该数据段。

不知道你有没有注意到上面的TCP报文的标志位字段
●标志位字段(U、A、P、R、S、F):占6比特。各比特的含义如下:  
  ◆URG:紧急指针(urgent pointer)有效。  
  ◆ACK:确认序号有效。  
  ◆PSH:接收方应该尽快将这个报文段交给应用层。  
  ◆RST:重建连接。  
  ◆SYN:发起一个连接。  
  ◆FIN:释放一个连接。 

SYN和FIN以及ACK很熟悉吧,没错就是TCP三次握手里边的,后边会再次帮你重温一下三次握手,四次挥手,这下有点感觉了吧。

UDP报文
这里写图片描述

套接字报文
在每个TCP、UDP数据段中都包含源端口和目标端口字段。
有时,我们把一个IP地址和一个端口号合称为一个套接字(Socket),而一个套接字对(Socket pair)可以唯一地确定互连网络中每个TCP连接的双方(客户IP地址、客户端口号、服务器IP地址、服务器端口号)。
套接字
不同的应用层协议可能基于不同的传输层协议,如FTP、TELNET、SMTP协议基于可靠的TCP协议。TFTP、SNMP、RIP基于不可靠的UDP协议。  
同时,有些应用层协议占用了两个不同的端口号,如FTP的20、21端口,SNMP的161、162端口。这些应用层协议在不同的端口提供不同的功能。如FTP的21端口用来侦听用户的连接请求,而20端口用来传送用户的文件数据。再如,SNMP的161端口用于SNMP管理进程获取SNMP代理的数据,而162端口用于SNMP代理主动向SNMP管理进程发送数据。  
  还有一些协议使用了传输层的不同协议提供的服务。如DNS协议同时使用了TCP 53端口和UDP 53端口。DNS协议在UDP的53端口提供域名解析服务,在TCP的53端口提供DNS区域文件传输服务。

TCP三次握手
三次握手

配合上面的报文在来看这张经典的图,不用解释了吧。

为什么不是两次?

主要防止已经失效的连接请求报文突然又传送到了服务器,从而产生错误。

1)采用两次握手假设有这样一种场景,客户端发送了第一个请求连接并且没有丢失,服务端在发送给客户端因为在网络结点中滞留的时间太长了,此时客户端迟迟没有收到确认报文,以为服务器没有收到,此时重新向服务器发送这条报文,此后客户端和服务器经过两次握手完成连接,传输数据,然后关闭连接。此时此前滞留的那一次请求连接,网络通畅了到达了服务器,这个报文本该是失效的,但是,两次握手的机制将会让客户端和服务器再次建立连接,这将导致不必要的错误和资源的浪费。

2)采用的是三次握手,就算是那一次失效的报文传送过来了,服务端接受到了那条失效报文并且回复了确认报文,但是客户端不会再次发出确认。由于服务器收不到确认,就知道客户端并没有请求连接。

其实上面还有个问题就是SYN攻击,由于篇幅原因什么是SYN攻击

TCP四次挥手
四次挥手

为什么建立连接是三次握手,关闭连接确是四次挥手呢?
服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。

为什么客户端最后还要等待2MSL?
MSL(Maximum Segment Lifetime),TCP允许不同的实现可以设置不同的MSL值。

第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。

第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75分钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

  TCP协议是一个面向连接的、可靠的协议。它将一台主机发出的字节流无差错地发往互联网上的其他主机。在发送端,它负责把上层传送下来的字节流分成报文段并传递给下层。在接收端,它负责把收到的报文进行重组后递交给上层。TCP协议还要处理端到端的流量控制,以避免缓慢接收的接收方没有足够的缓冲区接收发送方发送的大量数据。  
  UDP协议是一个不可靠的、无连接协议,主要适用于不需要对报文进行排序和流量控制的场合。  
  具体TCP是如何保证可靠的可以参考他人的文章:TCP是如何保证可靠的

总结:

网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。

补充:OSI的七层每层的作用

【1】物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换),这一层的数据叫做比特。
【2】数据链路层:负责物理传输的准备。在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。在这一层,数据的单位称为帧(frame)。数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。MAC地址和交换机在这一层。
【3】网络层:在 计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。如 果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地 址解析协议(ARP)。有关路由的一切事情都在这第3层处理。地址解析和路由是3层的重要目的。网络层还可以实现拥塞控制、网际互连等功能。在这一层,数据的单位称为数据包(packet)。网络层协议的代表包括:IP、IPX、RIP、OSPF等。负责管理网络地址、定位设备、决定路由,路由器工作在这层。包括用户数据包,路由更新包。
【4】传输层:OSI中最重要的一层,负责分割组合数据,实现端到端的逻辑连接。第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段 (segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的 数据包和其它在传输过程中可能发生的危险。第4层为上层提供端到端(最终用户到最终用户)的透明的、可靠的数据传输服务。所为透明的传输是指在通信过程中 传输层对上层屏蔽了通信传输系统的具体细节。传输层协议的代表包括:TCP、UDP、SPX等。
【5】会话层:负责在网络中两个节点间建立、维护、控制会话,区分不同的会话,以及提供单工、半双工、全双工3三种通信模式服务。通过传输层(端口号:传输端口与接收端口)建立数据传输的通路,主要在你的系统之间发起会话或者接受会话请求(设备之间需要互相认识可以是IP也可以是MAC或者是主机名)。NFS、X Windows、RPC都在这一层。
【6】表示层:可确保一个系统的应用层所发送的信息可以被另一个系统的应用层读取。例如,PC程序与另一台计算机进行通信,其中一台计算机使用扩展二一十进制交换码(EBCDIC),而另一台则使用美国信息交换标准码(ASCII)来表示相同的字符。如有必要,表示层会通过使用一种通格式来实现多种数据格式之间的转换。这一层主要解决拥护信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩, 加密和解密等工作都由表示层负责。
【7】应用层: 是最靠近用户的OSI层,这一层为用户的操作系统或应用程序(例如电子邮件、文件传输和终端仿真)提供网络服务。。应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。

猜你喜欢

转载自blog.csdn.net/mayongzhan_csdn/article/details/81238925