Arrays.sort源码实现

java1.7之后的版本,开始用双轴快排取代了以前的排序算法,现在只实现了8种基本数据类型性的双轴快排(降序排序),对象的排序在1.7中还在用老式的,不过都标了过时,估计以后版本中就会被新的双轴快排取代了。
DualPivotQuicksort()方法,里边一共写了三种算法(不算改进版的插入排序),对于大数组而且部分高度有序的用归并排序;其余的用双轴快排进行分割,分割到足够小的时候用插入排序(主要是改进版的pair insertion sort)。
双轴快排的基本原理是取两个pivot,所有比pivot1小的放到最左边,比pivot2大的放到最右边,然后递归下去,就可以把两端的元素完成排序,之后处理中间部分,中间部分如果过大就继续递归用这种方式继续分割,如果不大,就用单轴分割对两部分递归调用下去。

public static void sort(int[] a) { DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0); }

// 双轴快排
static void sort(int[] a, int left, int right,                      int[] work, int workBase, int workLen) {         // Use Quicksort on small arrays         if (right - left < QUICKSORT_THRESHOLD) { // 数组长度小于286时,直接用快速排序             sort(a, left, right, true);             return;         }
        /*          * run[i]记录第i次run的开始点(升序或降序)          */         int[] run = new int[MAX_RUN_COUNT + 1];         int count = 0; run[0] = left;
        // Check if the array is nearly sorted         for (int k = left; k < right; run[count] = k) {             if (a[k] < a[k + 1]) { // ascending                 while (++k <= right && a[k - 1] <= a[k]);             } else if (a[k] > a[k + 1]) { // descending                 while (++k <= right && a[k - 1] >= a[k]);                 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {                     int t = a[lo]; a[lo] = a[hi]; a[hi] = t;                 }             } else { // equal                 for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {                     if (--m == 0) {                         sort(a, left, right, true);                         return;                     }                 }             }
            /*              * 如果数组不是高度有序,用快排代替归并              */             if (++count == MAX_RUN_COUNT) {                 sort(a, left, right, true);                 return;             }         }
        // Check special cases         // Implementation note: variable "right" is increased by 1.         if (run[count] == right++) { // The last run contains one element             run[++count] = right;         } else if (count == 1) { // The array is already sorted             return;         }
        // Determine alternation base for merge         byte odd = 0;         for (int n = 1; (n <<= 1) < count; odd ^= 1);
        // Use or create temporary array b for merging         int[] b;                 // temp array; alternates with a         int ao, bo;              // array offsets from 'left'         int blen = right - left; // space needed for b         if (work == null || workLen < blen || workBase + blen > work.length) {             work = new int[blen];             workBase = 0;         }         if (odd == 0) {             System.arraycopy(a, left, work, workBase, blen);             b = a;             bo = 0;             a = work;             ao = workBase - left;         } else {             b = work;             ao = 0;             bo = workBase - left;         }
        // Merging         for (int last; count > 1; count = last) {             for (int k = (last = 0) + 2; k <= count; k += 2) {                 int hi = run[k], mi = run[k - 1];                 for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {                     if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {                         b[i + bo] = a[p++ + ao];                     } else {                         b[i + bo] = a[q++ + ao];                     }                 }                 run[++last] = hi;             }             if ((count & 1) != 0) {                 for (int i = right, lo = run[count - 1]; --i >= lo;                     b[i + bo] = a[i + ao]                 );                 run[++last] = right;             }             int[] t = a; a = b; b = t;             int o = ao; ao = bo; bo = o;         }     }
 
 
// 快速排序
    private static void sort(int[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // 对于短数组用插入排序 if (length < INSERTION_SORT_THRESHOLD) { //47 if (leftmost) { for (int i = left, j = i; i < right; j = ++i) { int ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] >= a[left - 1]); /* * 来自相邻部分的每个元素都扮演哨兵的角色,因此我们在每次迭代中可以避免左距离检查。
                 * 此外,我们使用了更优化的算法,也就是所谓的对插入排序,它比插入排序的传统实现更快(在快速排序的环境中)。
                */ for (int k = left; ++left <= right; k = ++left) { int a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } int last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // length / 7 的近似值 int seventh = (length >> 3) + (length >> 6) + 1; /* * 将5个均匀间隔的元素(包括)在范围内的中心元素排序。这些元素将用于下面描述的支点。
         * 根据经验,对这些元素间距的选择,在各种各样的输入上都能很好地工作。 */ int e3 = (left + right) >>> 1; // 中点 int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // 用插入排序将这5各元素进行排序 if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // 指针 int less = left; // 中心部分的第一个元素的index int great = right; // 右部分第一个元素的前一个index if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /*
             * 数组第二个和第四个取出来做pivot。
             * 注意:pivot1 <= pivot2. */ int pivot1 = a[e2]; int pivot2 = a[e4]; /* * 第一个和最后一个要排序的元素被移动到以前由pivot占据的位置。
             * 当分隔完成时,pivot被交换回它们的最终位置,并被排除在后续排序之外。 */ a[e2] = a[left]; a[e4] = a[right]; /* * 跳过比pivot大或小的元素,跳过左边比pivot1小的元素和右边比pivot大的元素,也就是这些元素不用动了,放在原地就好 */ while (a[++less] < pivot1); while (a[--great] > pivot2); /* * 分割过程: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { int ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // 交换pivot到它们最终应该在的位置 a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // 排除掉已知的pivot,递归排序左边和右边部分 sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * 上边的递归结束,左边的和右边就已经排完了,而且都在在自己该在的位置,
             * 接下来就是中间的部分,下面判断中间部分范围大小,
             * 如果大于七分之四(e1和e5的作用在这才看出来),就把所有和指针相等的元素也扔过去然后对这一部分递归,
             * 算法和上边一样,只是<>改成了= */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { int ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = pivot1; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * 如果不算很大,以中间e3作为pivot,一样的算法排 */ int pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a[k] == pivot) { continue; } int ak = a[k]; if (ak < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] > pivot) { --great; } if (a[great] < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a[k] = pivot; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } }


猜你喜欢

转载自blog.csdn.net/weixin_41876155/article/details/80210046
今日推荐