【Java】Futuretask 类

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010900754/article/details/81953254

对于多线程,最早的jdk使用的都是runnable接口,其中的run方法是没有返回值的。

后来就加入了callable接口:

public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

允许有返回值。但是别忘了这是多线程环境下,这个返回值远没有那简单。因为我们的任务实现了callable接口,然后被异步调用,这个返回值怎么返回就是一个问题了。或者说,这个获取返回值的操作与任务本身的执行肯定是两个线程了。而且只有任务执行成功了才会有返回值,如果抛异常了就没有返回值。这个返回值与任务执行的状态息息相关。必然需要有一个组件来维护这任务的执行状态。那么谁来维护呢?

jdk就针对callable接口的返回值设计了另一个接口也即Future接口,来负责返回值的维护,或者更准确地说,获取任务的执行状态。


package java.util.concurrent;

/**
 * A {@code Future} represents the result of an asynchronous
 * computation.  Methods are provided to check if the computation is
 * complete, to wait for its completion, and to retrieve the result of
 * the computation.  The result can only be retrieved using method
 * {@code get} when the computation has completed, blocking if
 * necessary until it is ready.  Cancellation is performed by the
 * {@code cancel} method.  Additional methods are provided to
 * determine if the task completed normally or was cancelled. Once a
 * computation has completed, the computation cannot be cancelled.
 * If you would like to use a {@code Future} for the sake
 * of cancellability but not provide a usable result, you can
 * declare types of the form {@code Future<?>} and
 * return {@code null} as a result of the underlying task.
 *
 * <p>
 * <b>Sample Usage</b> (Note that the following classes are all
 * made-up.)
 * <pre> {@code
 * interface ArchiveSearcher { String search(String target); }
 * class App {
 *   ExecutorService executor = ...
 *   ArchiveSearcher searcher = ...
 *   void showSearch(final String target)
 *       throws InterruptedException {
 *     Future<String> future
 *       = executor.submit(new Callable<String>() {
 *         public String call() {
 *             return searcher.search(target);
 *         }});
 *     displayOtherThings(); // do other things while searching
 *     try {
 *       displayText(future.get()); // use future
 *     } catch (ExecutionException ex) { cleanup(); return; }
 *   }
 * }}</pre>
 *
 * The {@link FutureTask} class is an implementation of {@code Future} that
 * implements {@code Runnable}, and so may be executed by an {@code Executor}.
 * For example, the above construction with {@code submit} could be replaced by:
 *  <pre> {@code
 * FutureTask<String> future =
 *   new FutureTask<String>(new Callable<String>() {
 *     public String call() {
 *       return searcher.search(target);
 *   }});
 * executor.execute(future);}</pre>
 *
 * <p>Memory consistency effects: Actions taken by the asynchronous computation
 * <a href="package-summary.html#MemoryVisibility"> <i>happen-before</i></a>
 * actions following the corresponding {@code Future.get()} in another thread.
 *
 * @see FutureTask
 * @see Executor
 * @since 1.5
 * @author Doug Lea
 * @param <V> The result type returned by this Future's {@code get} method
 */
public interface Future<V> {

    boolean cancel(boolean mayInterruptIfRunning);

    boolean isCancelled();

    boolean isDone();

    V get() throws InterruptedException, ExecutionException;

    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

这便是future接口的api。

通过future接口,我们可以取消任务的执行,判断执行的状态,获取返回值。

所以总结一下future接口的作用:提供了获取异步任务执行状态的接口。其实,这已经不仅仅是针对callable接口了,runnable接口也适用。

下面看一下future接口的唯一实现类futuretask类:

public class FutureTask<V> implements RunnableFuture<V> 
public interface RunnableFuture<V> extends Runnable, Future<V>

futuretask实现了runnable接口和future接口。那么它的定位就很明显了,首先一个futuretask肯定是一个task,可以被执行,其次它提供了获取执行状态的接口。

futuretask实际上一种特殊的task。我们自己定义的task会实现runnable或者callable接口,这种是静态的task,只是表明要做什么。但是futuretask是动态的task,会记录或者维持task执行的状态,类似于进程与程序的区别。所以futuretask必定在内部实现了一些关于执行状态维护的共有逻辑,然后通过future接口暴露出来。这些逻辑就在run方法里面实现,这也是为什么futuretask实现runnable接口的原因。所以它是介于线程与用户定义的静态task之间的概念,会持有静态task的引用,会维护执行状态,这些会在下面介绍。以往直接用thread对象嵌套静态任务的方式执行多线程,就无法维护任务执行的状态,这里引入一个中间层,封装了通用的方法,使得future接口可以实现

先看一下成员变量:

    /** The underlying callable; nulled out after running */
    private Callable<V> callable;
    /** The result to return or exception to throw from get() */
    private Object outcome; // non-volatile, protected by state reads/writes
    /** The thread running the callable; CASed during run() */
    private volatile Thread runner;
    /** Treiber stack of waiting threads */
    private volatile WaitNode waiters;

可以看到,futuretask把用户定义的静态任务作为成员变量存起来,并且用一个object类型的变量存储结果。waiters表示获取结果时阻塞的节点。

还有一个表示执行状态的变量:

     * NEW -> COMPLETING -> NORMAL
     * NEW -> COMPLETING -> EXCEPTIONAL
     * NEW -> CANCELLED
     * NEW -> INTERRUPTING -> INTERRUPTED
     */
    private volatile int state;
    private static final int NEW          = 0;
    private static final int COMPLETING   = 1;
    private static final int NORMAL       = 2;
    private static final int EXCEPTIONAL  = 3;
    private static final int CANCELLED    = 4;
    private static final int INTERRUPTING = 5;
    private static final int INTERRUPTED  = 6;

状态是一个task的重要特征。

下面是构造方法:

    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }


    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }

futuretask会假定用户定义的任务必定有返回值。如果没有那么就必须提供一个,也就是针对runnable的情况,最终也会适配出一个callable。下面是源码:

    public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }
    static final class RunnableAdapter<T> implements Callable<T> {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }

接着就是futuretask最核心的部分了,看一下run方法是如何维护状态的:

public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

首先判断这个任务的状态是否是new,再看是否有线程执行这个任务了,也就是说一个futuretask不能有两个线程同时执行。因为有状态的概念,每一个futuretask描述的是一个静态任务的执行情况,所以同一时间只能被一个线程执行,否则状态就不唯一了。判定可以执行后就去执行任务,然后设置结果。下面是set方法:

    protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }

这里也是使用cas操作,把状态修改了,同时给结果赋值。看一下finish:

    private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

这里做了什么?主要是如果任务没有执行完,那么调用get的线程会被阻塞,这里就是唤醒这些阻塞的线程的。可以结合get方法:

    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }
 private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }

只要状态不是结束,每一次get都会阻塞,阻塞就会创建一个新的node,实际上会阻塞在这个node上。

最后看一下cancel方法:

    public boolean cancel(boolean mayInterruptIfRunning) {
        if (!(state == NEW &&
              UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
                  mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
            return false;
        try {    // in case call to interrupt throws exception
            if (mayInterruptIfRunning) {
                try {
                    Thread t = runner;
                    if (t != null)
                        t.interrupt();
                } finally { // final state
                    UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
                }
            }
        } finally {
            finishCompletion();
        }
        return true;
    }

其实就是通过打断执行任务的线程来实现的。

整体就是这样,线程阻塞逻辑还是值得深入研究的。

猜你喜欢

转载自blog.csdn.net/u010900754/article/details/81953254
今日推荐