JVM(二)-java内存区域和内存溢出异常

Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的“高墙”,墙外面的人想进去,墙里面的人却想出来。

一、运行时数据区

JVM在执行Java程序时会把它所管理的内存划分为若干个不同的数据区域。这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有的区域则依赖用户线程的启动和结束而建立和销毁。JVM保存下面几个运行时的数据区域。

1、程序计数器

程序计数器(Program Counter Register)是一块较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

每条线程都需要有一个独立的程序计数器,各条线程之间的计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

如果线程正在执行的是一个Java 方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Natvie 方法,这个计数器值则为空(Undefined)。此内存区域是唯一一个在Java 虚拟机规范中没有规定任何OutOfMemoryError 情况的区域。

2、Java 虚拟机栈

Java 虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java 方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧(Stack Frame )用于存储局部变量表、操作栈、动态链接、方法出口等信息。每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

局部变量表存放了编译期可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference 类型,它不等同于对象本身,根据不同的虚拟机实现,它可能是一个指向对象起始地址的引用指针,也可能指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress 类型(指向了一条字节码指令的地址)。

在Java 虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError 异常;如果虚拟机栈可以动态扩展(当前大部分的Java 虚拟机都可动态扩展,只不过Java 虚拟机规范中也允许固定长度的虚拟机栈),当扩展时无法申请到足够的内存时会抛出OutOfMemoryError 异常。

3、本地方法栈

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java 方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native 方法服务。虚拟机规范中对本地方法栈中的方法使用的语言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。甚至有的虚拟机(譬如Sun HotSpot 虚拟机)直接就把本地方法栈和虚拟机栈合二为一。

与虚拟机栈一样,本地方法栈区域也会抛出StackOverflowError 和OutOfMemoryError异常。

4、Java 堆

对于大多数应用来说,Java 堆(Java Heap)是Java 虚拟机所管理的内存中最大的一块。Java 堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。

Java 堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC 堆”。如果从内存回收的角度看,由于现在收集器基本都是采用的分代收集算法,所以Java 堆中还可以细分为:新生代和老年代;再细致一点的有Eden 空间、From Survivor 空间、To Survivor 空间等。如果从内存分配的角度看,线程共享的Java 堆中可能划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB)。不过,无论如何划分,都与存放内容无关,无论哪个区域,存储的都仍然是对象实例,进一步划分的目的是为了更好地回收内存,或者更快地分配内存。

根据Java 虚拟机规范的规定,Java 堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx和-Xms 控制)。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError 异常。

5、方法区

方法区(Method Area)与Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做Non-Heap(非堆),目的应该是与Java 堆区分开来。

根据Java 虚拟机规范的规定,当方法区无法满足内存分配需求时,将抛出OutOfMemoryError 异常。

6、运行时常量池

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class 文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量池(Constant PoolTable),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

Java 虚拟机对Class 文件的每一部分(自然也包括常量池)的格式都有严格的规定,每一个字节用于存储哪种数据都必须符合规范上的要求,这样才会被虚拟机认可、装载和执行。但对于运行时常量池,Java 虚拟机规范没有做任何细节的要求,不同的提供商实现的虚拟机可以按照自己的需要来实现这个内存区域。不过,一般来说,除了保存Class 文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中。

运行时常量池相对于Class 文件常量池的另外一个重要特征是具备动态性,Java 语言并不要求常量一定只能在编译期产生,也就是并非预置入Class 文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的便是String 类的intern() 方法。

既然运行时常量池是方法区的一部分,自然会受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError 异常

7、直接内存

直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError 异常出现,所以我们放到这里一起讲解。

在JDK 1.4 中新加入了NIO(New Input/Output)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的I/O 方式,它可以使用Native 函数库直接分配堆外内存,然后通过一个存储在Java 堆里面的DirectByteBuffer 对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java 堆和Native 堆中来回复制数据。

显然,本机直接内存的分配不会受到Java 堆大小的限制,但是,既然是内存,则肯定还是会受到本机总内存(包括RAM 及SWAP 区或者分页文件)的大小及处理器寻址空间的限制。服务器管理员配置虚拟机参数时,一般会根据实际内存设置-Xmx等参数信息,但经常会忽略掉直接内存,使得各个内存区域的总和大于物理内存限制(包括物理上的和操作系统级的限制),从而导致动态扩展时出现OutOfMemoryError异常。

二、对象的访问定位

在Java 语言中,对象访问是如何进行的?对象访问在Java 语言中无处不在,是最普通的程序行为,但即使是最简单的访问,也会却涉及Java 栈、Java 堆、方法区这三个最重要内存区域之间的关联关系,如下面的这句代码:

Object obj = new Object();

假设这句代码出现在方法体中,那“Object obj”这部分的语义将会反映到Java 栈的本地变量表中,作为一个reference 类型数据出现。而“new Object()”这部分的语义将会反映到Java 堆中,形成一块存储了Object 类型所有实例数据值(Instance Data,对象中各个实例字段的数据)的结构化内存,根据具体类型以及虚拟机实现的对象内存布局(Object Memory Layout)的不同,这块内存的长度是不固定的。另外,在Java 堆中还必须包含能查找到此对象类型数据(如对象类型、父类、实现的接口、方法等)的地址信息,这些类型数据则存储在方法区中。

由于reference 类型在Java 虚拟机规范里面只规定了一个指向对象的引用,并没有定义这个引用应该通过哪种方式去定位,以及访问到Java 堆中的对象的具体位置,因此不同虚拟机实现的对象访问方式会有所不同,主流的访问方式有两种:使用句柄和直接指针。

1、 句柄方式

2、指针方式

比较:

1.使用句柄访问方式的最大好处就是reference 中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference 本身不需要被修改。

2.使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java 中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。

三、内存溢出异常

开发过程中,或程序运行过程中每次遇到OutOfMemory异常或GC异常或StackOverflowError异常我们都是一堆参数乱配,都把值调大,只是大体知道是跟jvm内存分配有关,具体应该怎么调,对应的异常应该调整那些参数,或者换句话说,jvm内存分配区域中都分别对应那些参数大多数情况下都是不知道的,只是把相关的参数跳上去,预期结果都是应该起作用,到底能不能起作用,自己心里也没底。下面就来说一下jvm堆、栈、方法区等内存区域对应的参数,及每个区域可能抛出的异常类型,发生异常的场景分析。

1、参数类型

  1. 堆空间参数

  2. 栈空间参数

  3. 方法区空间参数

  4. 本机直接内存参数

2、异常类型

1.OutOfMemory异常

2.StackOverflowError异常

3、辅助参数说明

  1. -XX:+HeapDumpOnOutOfMemoryError 打印堆内存异常时打印出快照信息

  2. -XX:+HeapDumpPath 快照输出路径

  3. -Xmn指定eden区的大小

  4. -XX:SurvirorRation来调整幸存区的大小

  5. -XX:PretenureSizeThreshold设置进入老年代的阀值

4、参数说明、对应场景的异常

1).堆内存参数

-Xms:堆最小值(新生代和老年代之和)

-Xmx:堆最大值(新生代和老年代之和)

当最小值=最大值时,这时堆内存是不可扩展的。

例:-Xms80M -Xmx80M

通常将-Xmx和-Xms设置为一样的大小来减少gc的次数,堆内存不足时抛出OutOfMemoryError异常。

2).栈内存参数

-Xss

例:-Xss128k

单线程下无论栈帧太大还是栈容量太小,及引用深度超过虚拟机允许深度都会抛出StackOverflowError每个方法压入栈的帧大小是不一致的。多线程下当每个线程分配栈帧太大内存不能够扩展时抛出OutOfMemoryError异常线程栈帧越大,可创建的线程越少。

3).方法区参数

-XX:PermSize方法区内存最小值

-XX:MaxPermSize 方法区内存最大值

各个线程共享的内存区域,主要用来存储类的元数据、常量、静态变量、即时编译器编译后的代码等数据

例:-XX:PermSize=20M -XX:MaxPermSize=20M

异常类型 OutOfMemoryError :

原因:常量过多,或代理反射等使用频繁

4).本机直接内存参数

-XX:MaxDirectMemorySize

例:-XX:MaxDirectMemorySize=10M

不足时抛出OutOfMemory异常

猜你喜欢

转载自blog.csdn.net/haoxin963/article/details/81975336