PCB与进程分配资源

PCB(progress control block),进程控制块。这里先不讨论PCB是什么,其实进程这个概念本身就是一个很难理解的概念,当一个可执行程序被系统执行了以后,就变成了一个进程。那么这个进程中到底有什么东西呢,系统究竟给这个进程分配了哪些资源?另外,进程在内存中的存储是怎么样的?

对于一个进程,它在被执行前其实是一个可执行程序。这个程序是被放在磁盘上的,当它要被执行的时候,它先被加载到内存当中,然后再放入到寄存器中,最后再让cpu执行该程序,这个时候一个静态的程序就变成了进程。

那么操作系统是怎么来管理这些进程的呢?操作系统通过一个双向链表把进程连起来。但是,对于进程其实它是一个抽象的概念,系统肯定要通过一个东西来描述进程,然后才能管理进程。于是PCB就出来了,操作系统通过PCB来描述进程,于是这个双向链表连接的其实是PCB,这个PCB是个什么玩意?它就是一个结构体,用来描述进程,在Linux下,就是task_struct结构体。

进程内存分配

每个进程运行的时候,都会拿到4G的虚拟内存,在32位Linux下,其中3G是交给用户的,1G是交给内核的,而task_struct就是存储在这1G的内核系统空间中。

  • 每个进程都有各自的私有用户空间(0-3G),这个空间对系统中的其他进程是不可见的。
  • 最高的1GB内核空间则为所有进程以及内核所共享。
  • 至于为什么需要这个1G的内核空间,是因为进程需要调用一些系统调用,来交给内核跑,程序的一部分逻辑可能是要交给内核去跑的,所以一部分虚拟地址必须要留给内核使用。

另外,我们常说的虚拟地址空间, 其实就是用户空间。

于是,通过上图我们可以发现,每个进程的PCB都是存在所有进程共享的内核空间的中,这也就很好理解,我们之前说操作系统管理进程,也就是在内核空间中管理的,在内核空间中通过链表管理所有进程的PCB,如果有一个进程要被创建,实际上多分配了这么一个4G的虚拟内存,并在共享的内核空间中的双向链表中加入了自己的PCB。

PCB中到底有什么?

我们拿task_strcut结构体来说话,下面这段源码注释,是我从一个大神那里copy来的,只是为了方便自己理解

struct task_struct {
volatile long state;  //说明了该进程是否可以执行,还是可中断等信息
unsigned long flags;  //Flage 是进程号,在调用fork()时给出
intsigpending;   //进程上是否有待处理的信号
mm_segment_taddr_limit; //进程地址空间,区分内核进程与普通进程在内存存放的位置不同
                       //0-0xBFFFFFFF foruser-thead
                       //0-0xFFFFFFFF forkernel-thread
//调度标志,表示该进程是否需要重新调度,若非0,则当从内核态返回到用户态,会发生调度
volatilelong need_resched;
int lock_depth;  //锁深度
longnice;       //进程的基本时间片
//进程的调度策略,有三种,实时进程:SCHED_FIFO,SCHED_RR,分时进程:SCHED_OTHER
unsigned long policy;
struct mm_struct *mm; //进程内存管理信息
int processor;
//若进程不在任何CPU上运行, cpus_runnable 的值是0,否则是1这个值在运行队列被锁时更新
unsigned long cpus_runnable, cpus_allowed;
struct list_head run_list; //指向运行队列的指针
unsigned longsleep_time;  //进程的睡眠时间
//用于将系统中所有的进程连成一个双向循环链表,其根是init_task
struct task_struct *next_task, *prev_task;
struct mm_struct *active_mm;
struct list_headlocal_pages;       //指向本地页面      
unsigned int allocation_order, nr_local_pages;
struct linux_binfmt *binfmt;  //进程所运行的可执行文件的格式
int exit_code, exit_signal;
intpdeath_signal;    //父进程终止是向子进程发送的信号
unsigned longpersonality;
//Linux可以运行由其他UNIX操作系统生成的符合iBCS2标准的程序
intdid_exec:1; 
pid_tpid;    //进程标识符,用来代表一个进程
pid_tpgrp;   //进程组标识,表示进程所属的进程组
pid_t tty_old_pgrp;  //进程控制终端所在的组标识
pid_tsession;  //进程的会话标识
pid_t tgid;
intleader;     //表示进程是否为会话主管
struct task_struct*p_opptr,*p_pptr,*p_cptr,*p_ysptr,*p_osptr;
struct list_head thread_group;  //线程链表
struct task_struct*pidhash_next; //用于将进程链入HASH表
struct task_struct**pidhash_pprev;
wait_queue_head_t wait_chldexit;  //供wait4()使用
struct completion*vfork_done;  //供vfork()使用
unsigned long rt_priority; //实时优先级,用它计算实时进程调度时的weight值
 
//it_real_value,it_real_incr用于REAL定时器,单位为jiffies,系统根据it_real_value
//设置定时器的第一个终止时间.在定时器到期时,向进程发送SIGALRM信号,同时根据
//it_real_incr重置终止时间,it_prof_value,it_prof_incr用于Profile定时器,单位为jiffies。
//当进程运行时,不管在何种状态下,每个tick都使it_prof_value值减一,当减到0时,向进程发送
//信号SIGPROF,并根据it_prof_incr重置时间.
//it_virt_value,it_virt_value用于Virtual定时器,单位为jiffies。当进程运行时,不管在何种
//状态下,每个tick都使it_virt_value值减一当减到0时,向进程发送信号SIGVTALRM,根据
//it_virt_incr重置初值。
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_value;
struct timer_listreal_timer;   //指向实时定时器的指针
struct tmstimes;     //记录进程消耗的时间
unsigned longstart_time;  //进程创建的时间
//记录进程在每个CPU上所消耗的用户态时间和核心态时间
longper_cpu_utime[NR_CPUS],per_cpu_stime[NR_CPUS]; 
//内存缺页和交换信息:
//min_flt, maj_flt累计进程的次缺页数(Copyon Write页和匿名页)和主缺页数(从映射文件或交换
//设备读入的页面数);nswap记录进程累计换出的页面数,即写到交换设备上的页面数。
//cmin_flt, cmaj_flt,cnswap记录本进程为祖先的所有子孙进程的累计次缺页数,主缺页数和换出页面数。
//在父进程回收终止的子进程时,父进程会将子进程的这些信息累计到自己结构的这些域中
unsignedlong min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1; //表示进程的虚拟地址空间是否允许换出
//进程认证信息
//uid,gid为运行该进程的用户的用户标识符和组标识符,通常是进程创建者的uid,gid
//euid,egid为有效uid,gid
//fsuid,fsgid为文件系统uid,gid,这两个ID号通常与有效uid,gid相等,在检查对于文件
//系统的访问权限时使用他们。
//suid,sgid为备份uid,gid
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups; //记录进程在多少个用户组中
gid_t groups[NGROUPS]; //记录进程所在的组
//进程的权能,分别是有效位集合,继承位集合,允许位集合
kernel_cap_tcap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;
struct user_struct *user;
struct rlimit rlim[RLIM_NLIMITS];  //与进程相关的资源限制信息
unsigned shortused_math;   //是否使用FPU
charcomm[16];   //进程正在运行的可执行文件名
 //文件系统信息
int link_count, total_link_count;
//NULL if no tty进程所在的控制终端,如果不需要控制终端,则该指针为空
struct tty_struct*tty;
unsigned int locks;
//进程间通信信息
struct sem_undo*semundo;  //进程在信号灯上的所有undo操作
struct sem_queue *semsleeping; //当进程因为信号灯操作而挂起时,他在该队列中记录等待的操作
//进程的CPU状态,切换时,要保存到停止进程的task_struct中
structthread_struct thread;
  //文件系统信息
struct fs_struct *fs;
  //打开文件信息
struct files_struct *files;
  //信号处理函数
spinlock_t sigmask_lock;
struct signal_struct *sig; //信号处理函数
sigset_t blocked;  //进程当前要阻塞的信号,每个信号对应一位
struct sigpendingpending;  //进程上是否有待处理的信号
unsigned long sas_ss_sp;
size_t sas_ss_size;
int (*notifier)(void *priv);
void *notifier_data;
sigset_t *notifier_mask;
u32 parent_exec_id;
u32 self_exec_id;
 
spinlock_t alloc_lock;
void *journal_info;
};

我们可以挑几个重点的记一下

  1. 标识相关:pid,ppid等等
  2. 文件相关:进程需要记录打开的文件信息,于是需要文件描述符表
  3. 内存相关:内存指针,指向进程的虚拟地址空间(用户空间)信息
  4. 优先级相关:进程相对于其他进程的调度优先级
  5. 上下文信息相关:CPU的所有寄存器中的值、进程的状态以及堆栈上的内容,当内核需要切换到另一个进程时,需要保存当前进程的所有状态,即保存当前进程的进程上下文,以便再次执行该进程时,能够恢复切换时的状态,继续执行。
  6. 状态相关:进程当前的状态,说明该进程处于什么状态
  7. 信号相关:进程的信号处理函数,以及记录当前进程是否还有待处理的信号
  8. I/O相关:记录进程与各种I/O设备之间的交互

猜你喜欢

转载自blog.csdn.net/lvyibin890/article/details/82193900