n个数依次入栈,出栈顺序有多少种?

参考网址:参考1 ,参考2

原题

有一个容量足够大的栈,n个元素以一定的顺序入栈,出栈顺序有多少种?

比如,AB两个元素,入栈顺序为AB,出栈情况有两种:

(1)入A,出A,入B,出B,出栈顺序为AB;

(2)入A,入B,出B,出A,出栈顺序为BA。

因此,2个元素时,结果为2。

分析:设f(n)为“n个元素以一定的顺序入栈,出栈顺序的种类数”。显然f(1)=1,f(2)=2。我们现在来分析一般情况。一般情况下,我们可以按照“第一个入栈的元素,在出栈序列中的位置”作为分类手段。

举个例子,我们假设入栈元素为A,B,C,D。我们按照“A在出栈序列中的位置”分类讨论:

(1)当A第一个出栈时,A先进,然后马上出栈。这种情况下,共有“BCD出栈顺序的种类数”种方案。也就是f(n-1)。

(2)当A第二个出栈时,A先进,B再进,之后B需要马上出来(这样才能确保A排第二)。此时共有f(n-2)种方案。

(3)当A第三个出栈时,A先进,之后只要确保排在A后面两个的元素比A先出即可。此时共有f(2)*f(n-3)种方案。f(2)是指“BC入栈出栈顺序的种类数”,f(n-3)是指”D入栈出栈的种类数”。

……

分析到这里,规律就很显然了。

从第一项开始,分别是第一个入栈元素在第i+1个出栈的情况数。

上式中,令f(0)=1 。

这个实际上是卡特兰数(Catalan number,又称卡塔兰数)。

若编程实现,需要维护一个一维数组,时间复杂度为O(n^2)。(递归实现的时间复杂度太高)。

卡塔兰数的通项公式为h(n)=C(2n,n)-C(2n,n+1)(n=0,1,2,...)。

元素A、B、C、D依次进栈,写出所有可能的出栈序列

应该有14种情况
A第一个出栈:ABCD;ACBD;ACDB;ABDC;ADCB;

A第二个出栈:BACD;BADC;

A第三个出栈:CBAD;BCAD;

A第四个出栈:BCDA;CBDA;CDBA;BDCA;DCBA.

卡特兰数

  卡特兰数前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

令h(0)=1,h(1)=1,catalan数满足递推式:  h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)

例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2  

h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5  

另类递推式:  h(n)=h(n-1)*(4*n-2)/(n+1);  

递推关系的解为:  h(n)=C(2n,n)/(n+1) (n=1,2,3,...)  

递推关系的另类解为:  h(n)=c(2n,n)-c(2n,n+1)(n=1,2,3,...)

本题目的常规分析

首先,我们设f(n)=序列个数为n的出栈序列种数。同时,我们假定第一个出栈的序数是k。  

第一个出栈的序数k将1~n的序列分成两个序列,其中一个是1~k-1,序列个数为k-1,另外一个是k+1~n,序列个数是n-k。  

此时,我们若把k视为确定一个序数,那么根据乘法原理,f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数,即选择k这个序数的f(n)=f(k-1)×f(n-k)。而k可以选1到n,所以再根据加法原理,将k取不同值的序列种数相加,得到的总序列种数为:f(n)=f(0)f(n-1)+f(1)f(n-2)+……+f(n-1)f(0)。  

看到此处,再看看卡特兰数的递推式,答案不言而喻,即为f(n)=h(n)= C(2n,n)/(n+1)= c(2n,n)-c(2n,n+1)(n=1,2,3,……)。  

最后,令f(0)=1,f(1)=1。  

非常规分析  

对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。  在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。  不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。  反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。  因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。  显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=c(2n,n)/(n+1)=h(n+1)。  

类似问题 买票找零

有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)

最终结果:C(2n,n)-C(2n,n+1)


 

猜你喜欢

转载自blog.csdn.net/akenseren/article/details/82149145
今日推荐