【转】L1正则化和L2正则化的理解

转:https://blog.csdn.net/fisherming/article/details/79492602

一、 奥卡姆剃刀(Occam's razor)原理:

         在所有可能选择的模型中,我们应选择能够很好的解释数据,并且十分简单的模型。从贝叶斯的角度来看,正则项对应于模型的先验概率。可以假设复杂模型有较小的先验概率,简单模型有较大的先验概率。   

二、正则化项

     2.1、什么是正则化?

      正则化是结构风险最小化策略的实现,在经验风险上加一个正则项或罚项,正则项一共有两种L1正则化和L2正则化,或者L1范数和L2范数。对于线性回归模型,使用L1正则化的模型叫做Lasso回归;使用L2正则化的模型叫做Ridge回归(岭回归)

     2.2、正则化项和模型复杂度之间的关系

        正则化项一般是模型复杂度的单调递增的函数,模型越复杂,正则化值越大。

    一般来说,监督学习可以看做最小化下面的目标函数:

      

       上式中的第1项为经验风险,即模型f(x)关于训练数据集的平均损失;第2项为正则化项,去约束我们的模型更加简单

三、L1范数

     3.1概念: L1范数是指向量中各个元素绝对值之和。

     3.2 为什么L1范数会使权值稀疏?

        任何的正则化算子,如果他在Wi=0的地方不可微,并且可以分解为“求和” 的形式,那么这个正则化算子就可以实现稀疏。

   3.3 参数稀疏有什么好处?

    (1)特征选择(Feature Selection)

      参数稀疏规则化能够实现特征的自动选择,在特征工程的过程中,一般来说,xi的大部分元素(特征)都和其标签yi没有关系的。我们在最小化目标函数的时候,考虑了这些无关特征,虽然可以获得最小的训练误差,但是对于新的样本时,这些没用的信息反而被考虑,干扰了对样本的预测。稀疏规则化将这些没用的特征的权重置为0,去掉这些没用的特征。

     (2)可解释性

     将无关特征置为0,模型更容易解释。例如:患某种病的概率为y,我们收集到的数据x是1000维的,我们的任务是寻找这1000种因素是如何影响患上这种病的概率。假设,我们有一个回归模型:y=w1*x1+w2*x2+…+w1000*x1000+b,通过学习,我们最后学习到w*只有很少的非零元素。例如只有5个非零的w*,那么这5个w*含有患上这种病的关键信息。也就是说,是否患上这种病和这5个特征相关,那事情变得容易处理多了。

四、L2范数

     4.1 概念:L2范数是指向量各元素的平方和然后再求平方根。

        正则化项可以取不同的形式。对于回归问题中,损失函数是平方损失,正则化项为参数向量L2的范数。

     4.2 为什么L2范数可以防止过拟合?

        左一:欠拟合;中间:正常拟合;右侧:过拟合

线性回归拟合图

       让L2范数的正则项||W||2最小,可以使得W的每个元素都很小,都接近于0。(L1范数让W等于0),而越小的参数说明模型越简单,越简单的模型越不容易产生过拟合的现象。(结合上图线性回归拟合图可知,限制了某些参数很小,其实也就限制了多项式的某些分量的影响很小,这也就相当于减少了变量的个数)

----------------------------------------------------------------------------------------------------------------------------------------------

两者区别

参考:https://www.2cto.com/kf/201609/545625.html

L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,因此可以用于特征选择 L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

稀疏模型与特征选择

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

L1和L2正则化的直观理解

这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合

L1正则化和特征选择

假设有如下带L1正则化的损失函数:
J=J0+α∑w|w|(1)
其中J0是原始的损失函数,加号后面的一项是L1正则化项,α是正则化系数。注意到L1正则化是权值的绝对值之和,J是带有绝对值符号的函数,因此J是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0后添加L1正则化项时,相当于对J0做了一个约束。令L=α∑w|w|,则J=J0+L,此时我们的任务变成在L约束下求出J0取最小值的解。考虑二维的情况,即只有两个权值w1和w2,此时L=|w1|+|w2|对于梯度下降法,求解J0的过程可以画出等值线,同时L1正则化的函数L也可以在w1w2的二维平面上画出来。如下图:

@图1 L1正则化
图1 L1正则化

图中等值线是J0的等值线,黑色方形是L函数的图形。在图中,当J0等值线与L首次相交的地方就是最优解。上图中J0与L在L的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w)。可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0与这些角接触的机率会远大于与L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

类似,假设有如下带L2正则化的损失函数:
J=J0+α∑ww2(2)
同样可以画出他们在二维平面上的图形,如下:

@图2 L2正则化
图2 L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0与L相交时使得w1或w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

L2正则化和过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

那为什么L2正则化可以获得值很小的参数?

以线性回归中的梯度下降法为例。假设要求的参数为θ,hθ(x)是我们的假设函数,那么线性回归的代价函数如下:
J(θ)=12m∑i=1m(hθ(x(i))?y(i))(3)
那么在梯度下降法中,最终用于迭代计算参数θ的迭代式为:
θj:=θj?α1m∑i=1m(hθ(x(i))?y(i))x(i)j(4)
其中α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:
θj:=θj(1?αλm)?α1m∑i=1m(hθ(x(i))?y(i))x(i)j(5)
其中λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θj都要先乘以一个小于1的因子,从而使得θj不断减小,因此总得来看,θ是不断减小的。

正则化参数的选择

L1正则化参数

通常越大的λ可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

假设有如下带L1正则化项的代价函数:
F(x)=f(x)+λ||x||1
其中x是要估计的参数,相当于上文中提到的w以及θ. 注意到L1正则化在某些位置是不可导的,当λ足够大时可以使得F(x)在x=0时取到最小值。如下图:

@图3 L1正则化参数的选择
图3 L1正则化参数的选择

分别取λ=0.5和λ=2,可以看到越大的λ越容易使F(x)在x=0时取到最小值。

L2正则化参数

从公式5可以看到,λ越大,θj衰减得越快。另一个理解可以参考图2,λ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。

-------------------------------------------------------------------------------------------------------------------------------------

L1和L2的区别

L1范数(L1 norm)是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算子”(Lasso regularization)。 

比如 向量A=[1,-1,3], 那么A的L1范数为 |1|+|-1|+|3|.

简单总结一下就是: 
L1范数: 为x向量各个元素绝对值之和。 
L2范数: 为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius范数 

Lp范数: 为x向量各个元素绝对值p次方和的1/p次方.

在支持向量机学习过程中,L1范数实际是一种对于成本函数求解最优的过程,因此,L1范数正则化通过向成本函数中添加L1范数,使得学习得到的结果满足稀疏化,从而方便人类提取特征。 
L1范数可以使权值稀疏,方便特征提取。 
L2范数可以防止过拟合,提升模型的泛化能力。

@AntZ: L1和L2的差别,为什么一个让绝对值最小,一个让平方最小,会有那么大的差别呢?看导数一个是1一个是w便知, 在靠进零附近, L1以匀速下降到零, 而L2则完全停下来了. 这说明L1是将不重要的特征(或者说, 重要性不在一个数量级上)尽快剔除, L2则是把特征贡献尽量压缩最小但不至于为零. 两者一起作用, 就是把重要性在一个数量级(重要性最高的)的那些特征一起平等共事(简言之, 不养闲人也不要超人)。

L1和L2正则先验分别服从什么分布

@齐同学:面试中遇到的,L1和L2正则先验分别服从什么分布,L1是拉普拉斯分布,L2是高斯分布。

@AntZ: 先验就是优化的起跑线, 有先验的好处就是可以在较小的数据集中有良好的泛化性能,当然这是在先验分布是接近真实分布的情况下得到的了,从信息论的角度看,向系统加入了正确先验这个信息,肯定会提高系统的性能。

对参数引入高斯正态先验分布相当于L2正则化, 这个大家都熟悉:


对参数引入拉普拉斯先验等价于 L1正则化, 如下图:

从上面两图可以看出, L2先验趋向零周围, L1先验趋向零本身。

正则化

L2正则化:目标函数中增加所有权重w参数的平方之和, 逼迫所有w尽可能趋向零但不为零. 因为过拟合的时候, 拟合函数需要顾忌每一个点, 最终形成的拟合函数波动很大, 在某些很小的区间里, 函数值的变化很剧烈, 也就是某些w非常大. 为此, L2正则化的加入就惩罚了权重变大的趋势.

L1正则化:目标函数中增加所有权重w参数的绝对值之和, 逼迫更多w为零(也就是变稀疏. L2因为其导数也趋0, 奔向零的速度不如L1给力了). 大家对稀疏规则化趋之若鹜的一个关键原因在于它能实现特征的自动选择。一般来说,xi的大部分元素(也就是特征)都是和最终的输出yi没有关系或者不提供任何信息的,在最小化目标函数的时候考虑xi这些额外的特征,虽然可以获得更小的训练误差,但在预测新的样本时,这些没用的特征权重反而会被考虑,从而干扰了对正确yi的预测。稀疏规则化算子的引入就是为了完成特征自动选择的光荣使命,它会学习地去掉这些无用的特征,也就是把这些特征对应的权重置为0。

参考:https://blog.csdn.net/v_JULY_v/article/details/78121924

猜你喜欢

转载自blog.csdn.net/Dorisi_H_n_q/article/details/82780907