POJ ~ 3621 ~ Sightseeing Cows (01分数规划 + 最短路)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ZscDst/article/details/82821885

题意

给一个有向图,点数为L,边数为P,然后输入L个点的点权F[i],接下来输入P条边(u->v边权为w),求一个点权和比边权和最大的环,求这个比值。

题解

假设点权和为X,边权和为Y,X/Y=ans,求ans最大。

u->v边权为w的边,我们建边F[v] - ans*w,可得\sum F[v] - ans*\sum w=0,我们二分ans,如果对于当前枚举值 x 该函数值小于0,那么x应该变大,如果该函数大于0,x应该变小。函数值小于0即,该图存在存在负环,所以用spfa判负环即可。

①这个环一定是简单环。(POJ的discuss里面有证明)②因为题中没说图连通,所以SPFA开始要把所有点入队(但是这个题数据较弱,所以直接以1点为起点也可以过)。

//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;

struct Edge
{
    int from, to; double dist;       //起点,终点,距离
    Edge(int u, int v, double w):from(u), to(v), dist(w) {}
};

struct SPFA
{
    int n, m;                      //结点数,边数(包括反向弧)
    vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];           //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    bool vis[MAXN];                //是否在队列中
    double d[MAXN];                   //Bellman-Ford
    int p[MAXN];                   //上一条弧
    int cnt[MAXN];                 //进队次数

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void AddEdge(int from, int to, double dist)
    {
        edges.push_back(Edge(from, to, dist));
        m = edges.size();
        G[from].push_back(m - 1);
    }

    bool spfa(int s)
    {
        //for (int i = 0; i <= n; i++) d[i] = INF;
        memset(vis, 0, sizeof(vis));
        memset(cnt, 0, sizeof(cnt));
        //d[s] = 0; vis[s] = true;

        queue<int> Q;
        //Q.push(s);
        for (int i = 1; i <= n; i++)//所有点入队
        {
            d[i] = 0; vis[i] = true;
            cnt[i]++;
            Q.push(i);
        }
        while (!Q.empty())
        {
            int u = Q.front(); Q.pop();
            vis[u] = false;
            for (int i = 0; i < G[u].size(); i++)
            {
                Edge& e = edges[G[u][i]];
                if (d[u] < INF && d[e.to] > d[u] + e.dist)
                {
                    d[e.to] = d[u] + e.dist;
                    p[e.to] = G[u][i];
                    if (!vis[e.to])
                    {
                        Q.push(e.to); vis[e.to] = true;
                        if (++cnt[e.to] > n) return false;//有负环
                    }
                }
            }
        }
        return true;//没有负环
    }

}solve;

const double eps = 1e-7;
int n, m, F[MAXN];
vector<Edge> G;

bool check(double x)
{
    solve.init(n);
    for (int i = 0; i < m; i++)
    {
        int u = G[i].from, v = G[i].to;
        double w = x*G[i].dist - F[G[i].from];
        solve.AddEdge(u, v, w);
    }
    return !solve.spfa(1);
}
int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d", &F[i]);
    for (int i = 0; i < m; i++)
    {
        int u, v, w; scanf("%d%d%d", &u, &v, &w);
        G.push_back(Edge(u, v, w));
    }
    double l = 0, r = 10000;
    while (r-l > eps)
    {
        double mid = (l+r)/2;
        if (check(mid)) l = mid;
        else r = mid;
    }
    printf("%.2f\n", l);
    return 0;
}

/*
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
*/

猜你喜欢

转载自blog.csdn.net/ZscDst/article/details/82821885