leedcode 初级题 链表

1、删除链表中的某节点。

 Delete Node in a Linked List
  
Write a function to delete a node (except the tail) in a singly linked list, given only access to that node.

Given linked list -- head = [4,5,1,9], which looks like following:

    4 -> 5 -> 1 -> 9
Example 1:

Input: head = [4,5,1,9], node = 5
Output: [4,1,9]
Explanation: You are given the second node with value 5, the linked list
             should become 4 -> 1 -> 9 after calling your function.
Example 2:

Input: head = [4,5,1,9], node = 1
Output: [4,5,9]
Explanation: You are given the third node with value 1, the linked list
             should become 4 -> 5 -> 9 after calling your function.
Note:

The linked list will have at least two elements.
All of the nodes' values will be unique.
The given node will not be the tail and it will always be a valid node of the linked list.
Do not return anything from your function.

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public void deleteNode(ListNode node) {
            node.val = node.next.val;
            node.next = node.next.next;//连续往后递归,把node.val 移出去
        
        }
            
 
}


2、删除倒数第N个节点。

 Remove Nth Node From End of List
   
Given a linked list, remove the n-th node from the end of list and return its head.

Example:

Given linked list: 1->2->3->4->5, and n = 2.

After removing the second node from the end, the linked list becomes 1->2->3->5.
Note:

Given n will always be valid.

Follow up:

Could you do this in one pass?

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
   public ListNode removeNthFromEnd(ListNode head, int n) {
    
    ListNode start = new ListNode(0);
    start.next = head;
    ListNode slow = start, fast = start;
    
    //Move fast in front so that the gap between slow and fast becomes n
    for(int i=1; i<=n+1; i++)   {
        fast = fast.next;
    }
    //Move fast to the end, maintaining the gap
    while(fast != null) {
        slow = slow.next;
        fast = fast.next;
    }
    //Skip the desired node
    slow.next = slow.next.next;
    return start.next;
}
}


3、链表反转。

Reverse Linked List
  Go to Discuss
Reverse a singly linked list.

Example:

Input: 1->2->3->4->5->NULL
Output: 5->4->3->2->1->NULL
Follow up:

A linked list can be reversed either iteratively or recursively. Could you implement both?

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public ListNode reverseList(ListNode head) {
        int i = 0 ;
        ListNode newList = new ListNode();
        newList.next = head;
        while(head.next != null){
            i++;
        }
        head.next = newList;
        return newLsit
    }
}


4、合并两个排序链表,新链表按数值大小排序。

Merge two sorted linked lists and return it as a new list. The new list should be made by splicing together the nodes of the first two lists.

Example:

Input: 1->2->4, 1->3->4
Output: 1->1->2->3->4->4

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
   public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
        if (l1 == null) return l2;
        if (l2 == null) return l1;
        
        if (l1.val < l2.val) {
            l1.next = mergeTwoLists(l1.next, l2);
            return l1;
        }
        else {
            l2.next = mergeTwoLists(l1, l2.next);
            return l2;
        }
    }
}

5、判断链表是否回文。

 Palindrome Linked List
  Go to Discuss
Given a singly linked list, determine if it is a palindrome.

Example 1:

Input: 1->2
Output: false
Example 2:

Input: 1->2->2->1
Output: true
Follow up:
Could you do it in O(n) time and O(1) space?

//方法一 可先反转排序之后对比,实际反转一半的链表即可,具体操作见方法二
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isPalindrome(ListNode head) {
        ListNode pReversedHead = head;
        ListNode pNode = head;
        ListNode pPrev = null;
        int i = 0;
        while (pNode != null) {
            ListNode pNext = pNode.next;
            i++;
            if (pNode.next == null) {
                pReversedHead = pNode;
            }
            pNode.next = pPrev;
            pPrev = pNode;
            pNode = pNext;
        }
        ListNode newHead = pReversedHead;
        ListNode oldHead = head;
        int j = 0;
        while(j++<=i/2){
           if (newHead == oldHead){
               newHead = newHead.next;
               oldHead = oldHead.next;  
           }   
           else return false;
       }
        return true;
    }
    
    
}

//方法二

This can be solved by reversing the 2nd half and compare the two halves. Let's start with an example [1, 1, 2, 1].

In the beginning, set two pointers fast and slow starting at the head.

1 -> 1 -> 2 -> 1 -> null 
sf
(1) Move: fast pointer goes to the end, and slow goes to the middle.

1 -> 1 -> 2 -> 1 -> null 
          s          f
(2) Reverse: the right half is reversed, and slow pointer becomes the 2nd head.

1 -> 1    null <- 2 <- 1           
h                      s
(3) Compare: run the two pointers head and slow together and compare.

1 -> 1    null <- 2 <- 1             
     h            s
public boolean isPalindrome(ListNode head) {
    ListNode fast = head, slow = head;
    while (fast != null && fast.next != null) {
        fast = fast.next.next;
        slow = slow.next;
    }
    if (fast != null) { // odd nodes: let right half smaller
        slow = slow.next;
    }
    slow = reverse(slow);
    fast = head;
    
    while (slow != null) {
        if (fast.val != slow.val) {
            return false;
        }
        fast = fast.next;
        slow = slow.next;
    }
    return true;
}

public ListNode reverse(ListNode head) {
    ListNode prev = null;
    while (head != null) {
        ListNode next = head.next;
        head.next = prev;
        prev = head;
        head = next;
    }
    return prev;
}

6、检查链表中是否有环。

Given a linked list, determine if it has a cycle in it.

Follow up:
Can you solve it without using extra space?

//Use two pointers, walker and runner.
//walker moves step by step. runner moves two steps at time.
//if the Linked List has a cycle walker and runner will meet at some
//point.
public boolean hasCycle(ListNode head) {
    if(head==null) return false;
    ListNode walker = head;
    ListNode runner = head;
    while(runner.next!=null && runner.next.next!=null) {
        walker = walker.next;
        runner = runner.next.next;
        if(walker==runner) return true;
    }
    return false;
}

猜你喜欢

转载自blog.csdn.net/yangwei256/article/details/82872867
今日推荐