缺失数据的Bootstrap与Jackknife方法:《Statistical Analysis with Missing Data》习题5.1 & 5.2

一、题目

5.1

本题基于之前习题1.6产生关于 ( Y 1 , Y 2 , U ) (Y_1, Y_2, U) 的模拟数据:
y i 1 = 1 + z i 1 y_{i1}=1+z_{i1}
y i 2 = 5 + 2 z i 1 + z i 2 y_{i2}=5+2*z_{i1}+z_{i2}
分别利用Bootstrap,Jackknife以及解析式三种方式来估计 Y 2 Y_2 均值与变异系数的标准差。

5.2

下面再加入缺失的情况来继续深入探讨,同样还是如习题1.6的构造方式来加入缺失值,其中 a = 2 a=2 b = 0 b=0

u i = a ( y i 1 1 ) + b ( y i 2 5 ) + z i 3 u_i=a*(y_{i1}-1)+b*(y_{i2}-5)+z_{i3}
其中 { ( z i 1 , z i 2 , z i 3 ) , i = 1 , . . . , 100 } \{(z_{i1}, z_{i2}, z_{i3}),i=1,...,100\} 服从相互独立的标准正态分布。这里构造缺失的方式主要是通过 u i u_i 来进行构造:对某一个样本而言,若 u i < 0 u_i<0 ,则 y i 2 y_{i2} 缺失。

我们将进行如下几种操作:
a)利用缺失插补后的Bootstrap与Jackknife,进行 Y 2 Y_2 均值与变异系数的标准差的估计。(插补方式为线性回归插补)
b)利用缺失插补前的Bootstrap与Jackknife,进行 Y 2 Y_2 均值与变异系数的标准差的估计。(插补方式为线性回归插补)
c)比较各种方式的90%置信区间实际覆盖真实值的情况,哪种方式表现最好,哪种方式是理论可行的,在大样本情况下。(这里对四种方法重复100次实验,看覆盖次数多少,越多表示效果越好)

二、解答

5.1

a)Bootstrap与Jackknife进行估计

首先构建生成数据函数。

# 生成数据
# 生成数据
GenerateData <- function(a = 0, b = 0) {
  y <- matrix(nrow = 3, ncol = 100)
  z <- matrix(rnorm(300), nrow = 3)
  
  y[1, ] <- 1 + z[1, ]
  y[2, ] <- 5 + 2 * z[1, ] + z[2, ]
  
  u <- a * (y[1, ] - 1) + b * (y[2, ] - 5) + z[3, ]
  # m2 <- 1 * (u < 0)
  
  y[3, ] <- y[2, ]
  y[3, u < 0] <- NA
  
  dat_comp <- data.frame(y1 = y[1, ], y2 = y[2, ])
  dat_incomp <- data.frame(y1 = y[1, ], y2 = y[3, ])
  # dat_incomp <- na.omit(dat_incomp)
  
  return(list(dat_comp = dat_comp, dat_incomp = dat_incomp))
}

Bootstrap与Jackknife的函数:

Bootstrap1 <- function(Y, B = 200, fun) {
  Y_len <- length(Y)
  mat_boots <- matrix(sample(Y, Y_len * B, replace = T), nrow = B, ncol = Y_len)
  statis_boots <- apply(mat_boots, 1, fun)
  boots_mean <- mean(statis_boots)
  boots_sd <- sd(statis_boots)
  return(list(mean = boots_mean, sd = boots_sd))
}

Jackknife1 <- function(Y, fun) {
  Y_len <- length(Y)
  mat_jack <- sapply(1:Y_len, function(i) Y[-i])
  redu_samp <- apply(mat_jack, 2, fun)
  jack_mean <- mean(redu_samp)
  jack_sd <- sqrt(((Y_len - 1) ^ 2 / Y_len) * var(redu_samp))
  return(list(mean = jack_mean, sd = jack_sd))
}

进行重复试验所需的函数:

RepSimulation <- function(seed = 2018, fun) {
  set.seed(seed)
  dat <- GenerateData()
  dat_comp_y2 <- dat$dat_comp$y2
  boots_sd <- Bootstrap1(dat_comp_y2, B = 200, fun)$sd
  jack_sd <- Jackknife1(dat_comp_y2, fun)$sd
  return(c(boots_sd = boots_sd, jack_sd = jack_sd))
}

下面重复100次实验进行 Y 2 Y_2 的均值与变异系数标准差的估计:

nrep <- 100
## 均值
fun = mean
mat_boots_jack <- sapply(1:nrep, RepSimulation, fun)
apply(mat_boots_jack, 1, function(x) paste(round(mean(x), 3), '±', round(sd(x), 3)))
## 变异系数
fun = function(x) sd(x) / mean(x)
mat_boots_jack <- sapply(1:nrep, RepSimulation, fun)
apply(mat_boots_jack, 1, function(x) paste(round(mean(x), 3), '±', round(sd(x), 3)))

从上面可以发现,Bootstrap与Jackknife两者估计结果较为相近,其中对均值标准差的估计,Jackknife的方差更小。这其实较为符合常识:Jackknife估计每次只取出一个样本,用剩下的样本来作为样本整体;而Bootstrap每次都会比较随机地重抽样,随机性相对较高,所以重复100次模拟实验,导致其方差相对较大。

下面我们用计算公式来进行推导。

b)均值与变异系数(大样本)的标准差解析式推导与计算

均值

Y 2 ˉ = 1 n i = 1 n Y 2 i \bar{Y_2} = \frac{1}{n}\sum_{i=1}^{n} Y_{2i}
其中 Y 2 i N ( 5 5 ) i = 1 2 . . . n Y_{2i}~N(5,5),i=1,2,...,n 。故:
V a r ( Y 2 ˉ ) = V a r ( Y 2 i ) n = 5 n Var(\bar{Y_2}) = \frac{Var(Y_{2i})}{n}=\frac{5}{n}
依题意, n = 100 n=100 ,故 Y 2 ˉ \bar{Y_2} 的标准差为 5 10 0.2236 \frac{\sqrt{5}}{10} \approx 0.2236 。所以从上面的估计可以看出,在此例中,Jackknife估计得相对较准。

变异系数(大样本近似)

## 变异系数
sd(sapply(1:10000, function(x) {
  set.seed(x)
  dat <- GenerateData(a = 0, b = 0)
  sd(dat$dat_comp$y2) / mean(dat$dat_comp$y2)
}))

变异系数大样本近似值为:0.03717648,说明前面的Bootstrap与Jackknife两种方法估计的都较为准确。

5.2

a)缺失插补后的Bootstrap与Jackknife

构造线性填补的函数,并进行线性填补。

DatImputation <- function(dat_incomp) {
  dat_imp <- dat_incomp
  lm_model = lm(y2 ~ y1, data = na.omit(dat_incomp))
  
  # 找出y2缺失对应的那部分data
  na_ind = is.na(dat_incomp$y2)
  na_dat = dat_incomp[na_ind, ]
  
  # 将缺失数据进行填补
  dat_imp[na_ind, 'y2'] = predict(lm_model, na_dat)
  return(dat_imp)
}

dat <- GenerateData(a = 2, b = 0)
dat_imp <- DatImputation(dat$dat_incomp)
fun = mean
Bootstrap1(dat_imp$y2, B = 200, fun)$sd
Jackknife1(dat_imp$y2, fun)$sd
fun = function(x) sd(x) / mean(x)
Bootstrap1(dat_imp$y2, B = 200, fun)$sd
Jackknife1(dat_imp$y2, fun)$sd

Bootstrap与Jackknife的填补结果,很大一部分是由于数据的缺失会造成距离真实值较远。但单从两种方法估计出来的值比较接近。

b)缺失插补前的Bootstrap与Jackknife

先构建相关的函数:

Array2meancv <- function(j, myarray) {
  dat_incomp <- as.data.frame(myarray[, j, ])
  names(dat_incomp) <- c('y1', 'y2')
  dat_imp <- DatImputation(dat_incomp)
  y2_mean <- mean(dat_imp$y2)
  y2_cv <- sd(dat_imp$y2) / y2_mean
  return(c(mean = y2_mean, cv = y2_cv))
}

Bootstrap_imp <- function(dat_incomp, B = 200) {
  n <- nrow(dat_incomp)
  array_boots <- array(dim = c(n, B, 2))
  mat_boots_ind <- matrix(sample(1:n, n * B, replace = T), nrow = B, ncol = n)

  array_boots[, , 1] <- sapply(1:B, function(i) dat_incomp$y1[mat_boots_ind[i, ]])
  array_boots[, , 2] <- sapply(1:B, function(i) dat_incomp$y2[mat_boots_ind[i, ]])
  
  mean_cv_imp <- sapply(1:B, Array2meancv, array_boots)
  boots_imp_mean <- apply(mean_cv_imp, 1, mean)
  boots_imp_sd <- apply(mean_cv_imp, 1, sd)
  return(list(mean = boots_imp_mean, sd = boots_imp_sd))
}

Jackknife_imp <- function(dat_incomp) {
  n <- nrow(dat_incomp)
  array_jack <- array(dim = c(n - 1, n, 2))
  
  array_jack[, , 1] <- sapply(1:n, function(i) dat_incomp[-i, 'y1'])
  array_jack[, , 2] <- sapply(1:n, function(i) dat_incomp[-i, 'y2'])
  
  mean_cv_imp <- sapply(1:n, Array2meancv, array_jack)
  jack_imp_mean <- apply(mean_cv_imp, 1, mean)
  jack_imp_sd <- apply(mean_cv_imp, 1, function(x) sqrt(((n - 1) ^ 2 / n) * var(x)))
  return(list(mean = jack_imp_mean, sd = jack_imp_sd))
}

然后看看两种方式估计出来的结果:

Bootstrap_imp(dat$dat_incomp)$sd
Jackknife_imp(dat$dat_incomp)$sd

缺失插补前进行Bootstrap与Jackknife也还是有一定的误差,标准差都相对更大,表示波动会比较大。具体表现情况下面我们多次重复模拟实验,通过90%置信区间来看各个方法的优劣。

c)比较各种方式的90%置信区间情况(重复100次实验)

RepSimulationCI <- function(seed = 2018, stats = 'mean') {
  mean_true <- 5
  cv_true <- sqrt(5) / 5
  
  myjudge <- function(x, value) {
    return(ifelse((x$mean - qnorm(0.95) * x$sd < value) & (x$mean + qnorm(0.95) * x$sd > value), 1, 0))
  }
  
  if(stats == 'mean') {
    fun = mean
    value = mean_true
  } else if(stats == 'cv') {
    fun = function(x) sd(x) / mean(x)
    value = cv_true
  }
  
  set.seed(seed)
  boots_after_ind <- boots_before_ind <- jack_after_ind <- jack_before_ind <- 0
  
  dat <- GenerateData(a = 2, b = 0)
  dat_incomp <- dat$dat_incomp
  
  # after imputation
  dat_imp <- DatImputation(dat_incomp)

  boots_after <- Bootstrap1(dat_imp$y2, B = 200, fun)
  boots_after_ind <- myjudge(boots_after, value)
  jack_after <- Jackknife1(dat_imp$y2, fun)
  jack_after_ind <- myjudge(jack_after, value)
  
  # before imputation
  boots_before <- Bootstrap_imp(dat_incomp)
  jack_before <- Jackknife_imp(dat_incomp)
  
  if(stats == 'mean') {
    
    boots_before$mean <- boots_before$mean[1]
    boots_before$sd <- boots_before$sd[1]
    jack_before$mean <- jack_before$mean[1]
    jack_before$sd <- jack_before$sd[1]
    
  } else if(stats == 'cv') {
    
    boots_before$mean <- boots_before$mean[2]
    boots_before$sd <- boots_before$sd[2]
    jack_before$mean <- jack_before$mean[2]
    jack_before$sd <- jack_before$sd[2]
    
  }
  
  boots_before_ind <- myjudge(boots_before, value)
  jack_before_ind <- myjudge(jack_before, value)
  
  return(c(boots_after = boots_after_ind,
           boots_before = boots_before_ind,
           jack_after = jack_after_ind,
           jack_before = jack_before_ind))
}

重复100次实验,均值情况:

nrep <- 100
result_mean <- apply(sapply(1:nrep, RepSimulationCI, 'mean'), 1, sum)
names(result_mean) <- c('boots_after', 'boots_before', 'jack_after', 'jack_before')
result_mean

变异系数情况:

result_cv <- apply(sapply(1:nrep, RepSimulationCI, 'cv'), 1, sum)
names(result_cv) <- c('boots_after', 'boots_before', 'jack_after', 'jack_before')
result_cv

上面的数字越表示90%置信区间覆盖真实值的个数,数字越大表示覆盖的次数越多,也就说明该方法会相对更好。

填补之前进行Bootstrap或Jackknife

无论是均值还是变异系数,通过模拟实验都能看出,在填补之前进行Bootstrap或Jackknife,其估计均会远优于在填补之后进行Bootstrap或Jackknife。而具体到Bootstrap或Jackknife,这两种方法相差无几。

填补之后进行Bootstrap或Jackknife

在填补之后进行Bootstrap或Jackknife,效果都会很差,其实仔细思考后也能够理解,本身缺失了近一半的数据,然后填补会带来很大的偏差,此时我们再从中抽样,有很大可能抽出来的绝大多数都是原本填补的有很大偏差的样本,这样估计就会更为不准了。

当然,从理论上说,填补之前进行Bootstrap或Jackknife是较为合理的,这样对每个Bootstrap或Jackknife样本,都可以用当前的观测值去填补当前的缺失值,这样每次填补可能花费的时间将对较长,但实际却更有效。

猜你喜欢

转载自blog.csdn.net/weixin_41929524/article/details/83216997