DTFT变换的性质

线性性质


x [ n ] D T F T X ( e j w ) y [ n ] D T F T Y ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})

a x [ n ] + b y [ n ] D T F T n = ( a x [ n ] + b y [ n ] ) e j w n = a n = x [ n ] e j w n + b n = y [ n ] e j w n = a X ( e j w ) + b Y ( e j w ) \begin{aligned}ax[n]+by[n]&\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}(ax[n]+by[n])e^{-jwn} \\ &=a\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}+b\sum_{n=-\infty}^{\infty}y[n]e^{-jwn}\\ &=aX(e^{jw})+bY(e^{jw}) \end{aligned}


时移性质


x [ n ] D T F T X ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})
x [ n n 0 ] x[n-n_0] 的傅里叶变换为
n = x [ n n 0 ] e j w n m = n n 0 m = x [ m ] e j w m e j w n 0 = e j w n 0 X ( e j w ) \sum_{n=-\infty}^{\infty}x[n-n_0]e^{-jwn}\xrightarrow{m=n-n_0}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}e^{-jwn_0}=e^{-jwn_0}X(e^{jw})


频移性质


x [ n ] D T F T X ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})
e j w 0 n x [ n ] e^{jw_0n}x[n] 的傅里叶变换为
n = e j w 0 n x [ n ] e j w n = n = x [ n ] e j ( w w 0 ) n = X ( e j ( w w 0 ) ) \sum_{n=-\infty}^{\infty}e^{jw_0n}x[n]e^{-jwn}=\sum_{n=-\infty}^{\infty}x[n]e^{-j(w-w_0)n}=X(e^{j(w-w_0)})


时域反转


x [ n ] D T F T X ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})
x [ n ] x[-n] 的傅里叶变换为
n = x [ n ] e j w n m = n m = x [ m ] e ( j w ) m = X ( e j w ) \sum_{n=-\infty}^{\infty}x[-n]e^{-jwn}\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m]e^{-(-jw)m}=X(e^{-jw})


时域微分


x [ n ] D T F T X ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})
由于
x [ n ] = 1 2 π π π X ( e j w ) e j w n d w x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw
两边同时对 n n 进行微分运算
d x [ n ] d n = 1 2 π π π j w X ( e j w ) e j w n d w \frac{dx[n]}{dn}=\frac{1}{2\pi}\int_{-\pi}^{\pi}jwX(e^{jw})e^{jwn}dw
所以
d x [ n ] d n D T F T j w X ( e j w ) \frac{dx[n]}{dn}\xrightarrow{DTFT}jwX(e^{jw})



频域微分


x [ n ] D T F T X ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})

X ( e j w ) = n = x [ n ] e j w n X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
两边同时对 w w 进行微分
d X ( e j w ) d w = n = j n x [ n ] e j w n \frac{dX(e^{jw})}{dw}=\sum_{n=-\infty}^{\infty}-jnx[n]e^{-jwn}
n = n x [ n ] e j w n = j d X ( e j w ) d w \Rightarrow \sum_{n=-\infty}^{\infty}nx[n]e^{-jwn}= j\frac{dX(e^{jw})}{dw}
所以
n x [ n ] D T F T j d X ( e j w ) d w nx[n]\xrightarrow{DTFT}j\frac{dX(e^{jw})}{dw}


卷积性质


x [ n ] D T F T X ( e j w ) y [ n ] D T F T Y ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
则二者卷积的 D T F T DTFT
n = ( x [ n ] y [ n ] ) e j w n = n = m = x [ m ] y [ n m ] e j w n = m = x [ m ] n = y [ n m ] e j w n k = n m m = x [ m ] e j w m k = y [ k ] e j w k = X ( e j w ) Y ( e j w ) \begin{aligned} \sum_{n=-\infty}^{\infty}(x[n]*y[n])e^{-jwn}&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]y[n-m]e^{-jwn} \\ &=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}y[n-m]e^{-jwn} \\ &\xrightarrow{k=n-m}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}\sum_{k=-\infty}^{\infty}y[k]e^{-jwk} \\ &=X(e^{jw})Y(e^{jw}) \end{aligned}


调制定理


x [ n ] D T F T X ( e j w ) y [ n ] D T F T Y ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
x [ n ] y [ n ] x[n]y[n] D T F T DTFT
n = ( x [ n ] y [ n ] ) e j w n = n = x [ n ] 1 2 π π π Y ( e j θ ) e j θ n d θ e j w n = 1 2 π π π n = x [ n ] j ( w θ ) n Y ( e j θ ) d θ = 1 2 π π π Y ( e j θ ) X ( e j ( w θ ) ) d θ \begin{aligned} \sum_{n=-\infty}^{\infty}(x[n]y[n])e^{-jwn} &=\sum_{n=-\infty}^{\infty}x[n]\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})e^{j\theta n}d\theta e^{-jwn} \\ &=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{n=-\infty}^{\infty}x[n]^{-j(w-\theta)n}Y(e^{j\theta})d\theta \\ &=\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})X(e^{j(w-\theta)})d\theta \end{aligned}

Parseval定理


x [ n ] D T F T X ( e j w ) y [ n ] D T F T Y ( e j w ) x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})

n = x [ n ] y [ n ] = n = x [ n ] ( 1 2 π π π Y ( e j w ) e j w n d w ) = 1 2 π π π x [ n ] e j w n Y ( e j w ) d w = 1 2 π π π X ( e j w ) Y ( e j w ) d w \begin{aligned} \sum_{n=-\infty}^{\infty}x[n]y^{*}[n]&=\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{jw})e^{jwn}dw)^{*} \\ &=\frac{1}{2\pi}\int_{-\pi}^{\pi}x[n]e^{-jwn}Y^{*}(e^{jw})dw \\ &=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw \end{aligned}
得到Parseval定理
n = x [ n ] y [ n ] = 1 2 π π π X ( e j w ) Y ( e j w ) d w \sum_{n=-\infty}^{\infty}x[n]y^{*}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
如果 y [ n ] = x [ n ] y[n]=x[n] ,那么
n = x [ n ] 2 = 1 2 π π π X ( e j w ) 2 d w \sum_{n=-\infty}^{\infty}\vert x[n] \vert^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\vert X(e^{jw})\vert^2dw

即序列 x [ n ] x[n] 的能量,可以通过对 X ( e j w ) 2 \vert X(e^{jw})\vert^2 的积分求得,所以称 X ( e j w ) 2 \vert X(e^{jw})\vert^2 为序列 x [ n ] x[n] 的能量谱密度。

猜你喜欢

转载自blog.csdn.net/The_last_knight/article/details/84671230