tensorflow+faster rcnn代码理解(一):构建vgg前端和RPN网络

0.前言

该代码运行首先就是调用vgg类创建一个网络对象self.net

if cfg.FLAGS.network == 'vgg16':
    self.net = vgg16(batch_size=cfg.FLAGS.ims_per_batch)

该类位于vgg.py中,如下:

class vgg16(Network):
    def __init__(self, batch_size=1):
        Network.__init__(self, batch_size=batch_size)

 可以看到该类是继承于network类的。也就是vgg类创建的对象拥有network类的变量,同时又有自己新增的变量。我们在来看network类,位于network.py中。可以看到该类含有的变量就是训练一个网络所需要基本的变量了。

class Network(object):
    def __init__(self, batch_size=1):
        self._feat_stride = [16, ]
        self._feat_compress = [1. / 16., ]
        self._batch_size = batch_size
        self._predictions = {}
        self._losses = {}
        self._anchor_targets = {}
        self._proposal_targets = {}
        self._layers = {}
        self._act_summaries = []
        self._score_summaries = {}
        self._train_summaries = []
        self._event_summaries = {}
        self._variables_to_fix = {}

下面代码都以输入图像为600×800举例。 

1.构建vgg16的前端(build_head函数)

vgg16的网络模型图如下,代码就是完成红框的部分。

    def build_head(self, is_training):

        # Main network
        # Layer  1
        net = slim.repeat(self._image, 2, slim.conv2d, 64, [3, 3], trainable=False, scope='conv1')  #224×224×64
        net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool1') #112×112×64

        # Layer 2
        net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], trainable=False, scope='conv2')  #112×112×128
        net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool2') #56×56×128

        # Layer 3
        net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], trainable=is_training, scope='conv3') #56×56×256
        net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool3')  #28×28×256

        # Layer 4
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], trainable=is_training, scope='conv4')#28×28×512
        net = slim.max_pool2d(net, [2, 2], padding='SAME', scope='pool4')  #14×14×512

        # Layer 5
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], trainable=is_training, scope='conv5') #14×14×512

        # Append network to summaries
        self._act_summaries.append(net)

        # Append network as head layer
        self._layers['head'] = net

        return net

2.构建RPN网络(build_rpn函数)

我将build_rpn函数的内容拆成两部分来写,首先是生成anchor部分

2.1  生成anchor

def build_rpn(self, net, is_training, initializer):

        # Build anchor component     调用network.py中的函数创建anchor的构成,主要有anchor_scale和anchor_ratio两个参数修改
        self._anchor_component()
    #anchor的构成
    def _anchor_component(self):
        with tf.variable_scope('ANCHOR_' + 'default'):
            # just to get the shape right 这里feat_stride = 16,因为此时对于vgg模型来说添加RPN的时候,得到的特征度是经过4次pool的,也就是下采样了16倍
            height = tf.to_int32(tf.ceil(self._im_info[0, 0] / np.float32(self._feat_stride[0]))) #下采样后特征图的高度,这里为38(600/16)
            width = tf.to_int32(tf.ceil(self._im_info[0, 1] / np.float32(self._feat_stride[0])))  #下采样后特征图的宽度,这里为50(800/16)
            anchors, anchor_length = tf.py_func(generate_anchors_pre, #anchor_length是anchor的数量
                                                [height, width,
                                                 self._feat_stride, self._anchor_scales, self._anchor_ratios],
                                                [tf.float32, tf.int32], name="generate_anchors")  #调用snippets.py中的generate_anchors_pre函数产生anchor
            anchors.set_shape([None, 4])
            anchor_length.set_shape([])
            self._anchors = anchors
            self._anchor_length = anchor_length

在此基础上进而调用generate_anchors_pre函数生成anchor,位于snippets.py

def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)):
    """ A wrapper function to generate anchors given different scales
      Also return the number of anchors in variable 'length'
    """
    anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
    #anchors = generate_anchors() #采用generate_anchors默认的形参
    #pdb.set_trace()
    A = anchors.shape[0]
    shift_x = np.arange(0, width) * feat_stride  #对应到原图上产生anchor的中心点的位置
    shift_y = np.arange(0, height) * feat_stride
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    #shifts形成了(Xmin,Ymin,Xmax,Ymax)的形式,但是由于相当于枚举了achor的中心点,所以Xmin=Xmax,Ymin=Ymax,并且acnhor是按照一行一行排列的
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose()
    K = shifts.shape[0] #应该生成的anchor点的数量
    # width changes faster, so here it is H, W, C

    anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
    anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
    length = np.int32(anchors.shape[0])

    return anchors, length

 生成anchor的的过程是(在fb的detectron框架中生成方式与这个也一样,见博客 detectron代码理解(六):对输入样本如何产生anchor):

(1)首先对一个cell生程anchor,此时这个anchor没有位置点信息,只有长宽而已,这个长宽满足我们设计的anchor_scales和anchor_ratios,对于generate_anchors的解释可以看:detectron代码理解(四):generate_anchors,生成完毕后A就是这个cell上anchor的数量,这里为9,因为是3个anchor_scales和3个anchor_ratios的尺度的相乘的结果。

(2)之后根据我们输入图片的长宽,以及feat_stride,计算在这样一张图片上以stride为步长要在哪些位置生成anchor,此时才有了放置这些anchor的点shifts

(3)有了这些放置点的位置,将(1)步骤的anchor挪过去,就相当于在每一个位置生成了包含9中形态的anchors。

最后生成的anchor个数为38×50×9 = 17100个anchor

2.2 构建RPN层

  def build_rpn(self, net, is_training, initializer):

        #生成anchor(代码在前)
        #创建RPN层,利用3×3×512来实现
        rpn = slim.conv2d(net, 512, [3, 3], trainable=is_training, weights_initializer=initializer, scope="rpn_conv/3x3")

        self._act_summaries.append(rpn)   
        #rpn_cls_score.shape = (1,38,50,18)  每个anchor是二分类 这个H和W是最后一张特征图的大小(这里假设原图是600×800,经过16倍的下采样后成为38×50)
        rpn_cls_score = slim.conv2d(rpn, self._num_anchors * 2, [1, 1], trainable=is_training, weights_initializer=initializer, padding='VALID', activation_fn=None, scope='rpn_cls_score')
        
        # Change it so that the score has 2 as its channel size
        # 过程:1.首先将rpn_cls_score变为to_caffe的形式,从 (1,38,50,18)变为(1,18,38,50)
        # 2.再将to_caffe变为([self._batch_size], [num_dim, -1], [input_shape[2]]),其中num_dim 为下面输入参数2,input_shape[2]是rpn_cls_score的50
        #  to_caffe = (1,2,9×38,50)= (1,2,342,50)
        # 3.最后将上面的第二维度放到最后,就改变为(1,342,50,2)
        rpn_cls_score_reshape = self._reshape_layer(rpn_cls_score, 2, 'rpn_cls_score_reshape')  #rpn_cls_score_reshape.shape = (1,342,50,2)
        
        #经过上面之后rpn_cls_score_reshape = (1,342,50,2)
        #将rpn_cls_score_reshape变为(1×342×50,2)即(17100 2),再增加softmax
        #最后再reshape成(1,342,50,2)的大小,所以rpn_cls_prob_reshape的大小为(1,342,50,2)
        rpn_cls_prob_reshape = self._softmax_layer(rpn_cls_score_reshape, "rpn_cls_prob_reshape") 
                
        rpn_cls_prob = self._reshape_layer(rpn_cls_prob_reshape, self._num_anchors * 2, "rpn_cls_prob")  #rpn_cls_prob.shape = (1,38,50,18)
        
        rpn_bbox_pred = slim.conv2d(rpn, self._num_anchors * 4, [1, 1], trainable=is_training, weights_initializer=initializer, padding='VALID', activation_fn=None, scope='rpn_bbox_pred')
        
        return rpn_cls_prob, rpn_bbox_pred, rpn_cls_score, rpn_cls_score_reshape

最后RPN层的输出为: 

  • rpn_cls_prob
  • rpn_bbox_pred
  • rpn_cls_score
  • rpn_cls_score_reshape

猜你喜欢

转载自blog.csdn.net/Mr_health/article/details/84953759
今日推荐