数据脏读造成业务处理失败

一、在程序中通常一个事务分为N数据操作操作步骤,包括读写操作

因此通常会产生,在并发的场景中由于数据的脏读导致业务修改失败,在分布式是系统对于解决数据的一致性产生极大的成本

通常会采取事务隔离机制来处数据的一致性:

事务隔离五种级别:
        TRANSACTION_NONE  不使用事务。
        TRANSACTION_READ_UNCOMMITTED  允许脏读。
        TRANSACTION_READ_COMMITTED  防止脏读,最常用的隔离级别,并且是大多数数据库的默认隔离级别
        TRANSACTION_REPEATABLE_READ  可以防止脏读和不可重复读,
        TRANSACTION_SERIALIZABLE  可以防止脏读,不可重复读取和幻读,(事务串行化)会降低数据库的效率

1 脏读:修改时加排他锁,直到事务提交后才释放,读取时加共享锁,读取完释放事务1读取数据时加上共享锁后(这 样在事务1读取数据的过程中,其他事务就不会修改该数据),不允许任何事物操作该数据,只能读取,之后1如果有更新操作,那么会转换为排他锁,其他事务更 无权参与进来读写,这样就防止了脏读问题。

       但是当事务1读取数据过程中,有可能其他事务也读取了该数据,读取完毕后共享锁释放,此时事务1修改数据,修改 完毕提交事务,其他事务再次读取数据时候发现数据不一致,就会出现不可重复读问题,所以这样不能够避免不可重复读问题。

      2 不可重复读:读取数据时加共享锁,写数据时加排他锁,都是事务提交才释放锁。读取时候不允许其他事物修改该数据,不管数据在事务过程中读取多少次,数据都是一致的,避免了不可重复读问题

只需要在添加事务额注解上加上这样的代码即可提升事务的隔离级别:

 @Transactional(rollbackFor = OrderProcException.class, isolation = Isolation.SERIALIZABLE)

二、 数据库锁:共享锁与排他锁

InnoDB引擎的锁机制

**

(之所以以InnoDB为主介绍锁,是因为InnoDB支持事务,支持行锁和表锁用的比较多,Myisam不支持事务,只支持表锁)

共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。
意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

说明:

1)共享锁和排他锁都是行锁,意向锁都是表锁,应用中我们只会使用到共享锁和排他锁,意向锁是mysql内部使用的,不需要用户干预。

2)对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁,事务可以通过以下语句显示给记录集加共享锁或排他锁。
共享锁(S):SELECT * FROM table_name WHERE … LOCK IN SHARE MODE。
排他锁(X):SELECT * FROM table_name WHERE … FOR UPDATE。

3)InnoDB行锁是通过给索引上的索引项加锁来实现的,因此InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!。

共享锁:

对某一资源加共享锁,自身可以读该资源,其他人也可以读该资源(也可以再继续加共享锁,即 共享锁可多个共存),但无法修改。要想修改就必须等所有共享锁都释放完之后。语法为

select * from table lock in share mode

过程:
T1运行(并加共享锁)
T2运行
If T1还没执行完
T2等......
else锁被释放
T2执行
endif

T2 之所以要等,是因为 T2 在执行 update 前,试图对 table 表加一个排他锁,而数据库规定同一资源上不能同时共存共享锁和排他锁。所以 T2 必须等 T1 执行完,释放了共享锁,才能加上排他锁,然后才能开始执行 update 语句。

例4:(死锁的发生)-----------------------------------------------------------------------------------------------------------------
T1:begin transelect * from table lock in share modeupdate table set column1='hello'
T2:begin transelect * from table lock in share modeupdate table set column1='world'

假设 T1 和 T2 同时达到 select,T1 对 table 加共享锁,T2 也对 table 加共享锁,当 T1 的 select 执行完,准备执行 update 时,根据锁机制,T1 的共享锁需要升级到排他锁才能执行接下来的 update.在升级排他锁前,必须等 table 上的其它共享锁(T2)释放,同理,T2 也在等 T1 的共享锁释放。于是死锁产生了。

死锁怎么解决呢?一种办法是,如下:
例6:-------------------------------------------------------------------------------------------------------------------------------------
T1:begin transelect * from table for updateupdate table set column1='hello'
T2:begin transelect * from table for updateupdate table set column1='world'

这样,当 T1 的 select 执行时,直接对表加上了排他锁,T2 在执行 select 时,就需要等 T1 事物完全执行完才能执行。排除了死锁发生。但当第三个 user 过来想执行一个查询语句时,也因为排他锁的存在而不得不等待,第四个、第五个 user 也会因此而等待。在大并发情况下,让大家等待显得性能就太友好了。
所以,有些数据库这里引入了更新锁(如Mssql,注意:Mysql不存在更新锁)。

例7:-------------------------------------------------------------------------------------------------------------------------------------
T1:begin transelect * from table (加更新锁)update table set column1='hello'
T2:begin transelect * from table (加更新锁)update table set column1='world'

更新锁其实就可以看成排他锁的一种变形,只是它也允许其他人读(并且还允许加共享锁)。但不允许其他操作,除非我释放了更新锁。T1 执行 select,加更新锁。T2 运行,准备加更新锁,但发现已经有一个更新锁在那儿了,只好等。当后来有 user3、user4...需要查询 table 表中的数据时,并不会因为 T1 的 select 在执行就被阻塞,照样能查询,相比起例6,这提高了效率。

后面还有意向锁和计划锁:意向锁即是:某行修改时,自动加上了排他锁,同时会默认给该表加意向锁,表示里面有记录正被锁定,这时,其他人就不可以对该表加表锁了。如果没有意向锁这个类似指示灯的东西存在,其他人加表锁之前就得扫描全表,查看是否有记录正被锁定,效率低下。而计划锁这些,和程序员关系不大,就没去了解了。
 

猜你喜欢

转载自blog.csdn.net/qq_31854907/article/details/84976675