【4FreeRTOS完整的分析一下代码】二值信号量

1,主要的就是分析下面的代码


/* Includes ------------------------------------------------------------------*/
#include "main.h"           //包含了三个头文件
#include "stm32f1xx_hal.h"
#include "cmsis_os.h"

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private variables    私有变量          ---------------------------------------------------------*/
osThreadId PeriodicHandle;//实时系统的线程(任务)的识别码(身份证)
//osThreadId 》typedef TaskHandle_t osThreadId;》typedef void * TaskHandle_t;
//最终的目标还是 TaskHandle_t 手册上看看什么意思

osThreadId HandlerHandle;
osSemaphoreId bSem01Handle;//信号量任务的身份证

/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/

/* USER CODE END PV */

/* Private function prototypes 私有函数原型 -----------------------------------------------*/
void SystemClock_Config(void); //系统时钟的配置
static void MX_GPIO_Init(void);//GPIO的初始化
void PeriodicTask(void const * argument);//返回值为空,在MX中设置的函数PeriodicTask声明
void HandlerTask(void const * argument);

/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/

/* USER CODE END PFP */

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  *
  * @retval None
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration-- MCU配置  ----------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
	/* 复位所有外设,初始化FLASH接口和系统滴答时钟 */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
	/*  配置系统时钟 */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
	/*  初始化所有外设   */
	
  MX_GPIO_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* USER CODE BEGIN RTOS_MUTEX */
  /* add mutexes,  添加互斥    ... */
  /* USER CODE END RTOS_MUTEX */

  /* Create the semaphores(s) */
  /* definition and creation of bSem01 */
	/*  定义和创建信号量bSem01    */
  osSemaphoreDef(bSem01);
  bSem01Handle = osSemaphoreCreate(osSemaphore(bSem01), 1);

  /* USER CODE BEGIN RTOS_SEMAPHORES */
  /* add semaphores, ... */
  /* USER CODE END RTOS_SEMAPHORES */

  /* USER CODE BEGIN RTOS_TIMERS */
  /* start timers, add new ones,添加软件定时器 ... */
  /* USER CODE END RTOS_TIMERS */

  /* Create the thread(s) */
  /* definition and creation of Periodic */
	/*定义和创建Periodic任务*/
  osThreadDef(Periodic, PeriodicTask, osPriorityNormal, 0, 128);
  PeriodicHandle = osThreadCreate(osThread(Periodic), NULL);

  /* definition and creation of Handler */
  osThreadDef(Handler, HandlerTask, osPriorityIdle, 0, 128);
  HandlerHandle = osThreadCreate(osThread(Handler), NULL);

  /* USER CODE BEGIN RTOS_THREADS */
  /* add threads, ... */
  /* USER CODE END RTOS_THREADS */

  /* USER CODE BEGIN RTOS_QUEUES */
  /* add queues, ... */
  /* USER CODE END RTOS_QUEUES */
 

  /* Start scheduler 开始任务调度管理器 */
  osKernelStart();
  
  /* We should never get here as control is now taken by the scheduler */
	/*当任务调度管理器运行的时候,我们将永远不会运行到这里(下面的while)*/

  /* Infinite loop 无限循环   */
  /* USER CODE BEGIN WHILE */
  while (1)//	/*当任务调度管理器运行的时候,我们将永远不会运行到这里*/
		

  {

  /* USER CODE END WHILE */

  /* USER CODE BEGIN 3 */

  }
  /* USER CODE END 3 */

}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

    /**Initializes the CPU, AHB and APB busses clocks  初始化CPU,AHB,APB总线的时钟
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;//复位与时钟控制器(Reset Clock Controller),高速
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;//高速时钟状态开启
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;//预分频值为1
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;//PLL状态为开启
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;//倍频为9
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Initializes the CPU, AHB and APB busses clocks 
    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;//AHB时钟总线
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;//APB1时钟总线
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;//APB2时钟总线

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Configure the Systick interrupt time   配置系统滴答中断时间
    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);//1000分频

    /**Configure the Systick 
    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration   */ 
	/* IRQ=Interrupt request中断请求 。系统中断请求配置  NVIC:中断嵌套配置  */
  HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
}

/** Configure pins as  将端口配置为模拟量、输入、输出、事件输出、中断
        * Analog 
        * Input 
        * Output
        * EVENT_OUT
        * EXTI
*/
static void MX_GPIO_Init(void)
{

  GPIO_InitTypeDef GPIO_InitStruct;

  /* GPIO Ports Clock Enable GPIO端口时钟使能 */
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */ //配置GPIO引脚的输出电平
  HAL_GPIO_WritePin(GPIOB, LED0_Pin|LED1_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pins : LED0_Pin LED1_Pin */
  GPIO_InitStruct.Pin = LED0_Pin|LED1_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
  GPIO_InitStruct.Pull = GPIO_PULLUP;//上拉输出
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/* PeriodicTask function 详细定义函数*/
void PeriodicTask(void const * argument)
{

  /* USER CODE BEGIN 5 */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1);//系统自带延时函数,不会一直占用CPU的资源
  }
  /* USER CODE END 5 */ 
}

/* HandlerTask function */
void HandlerTask(void const * argument)
{
  /* USER CODE BEGIN HandlerTask */
  /* Infinite loop */
  for(;;)
  {
    osDelay(1);
  }
  /* USER CODE END HandlerTask */
}

/**
  * @brief  Period elapsed callback in non blocking mode 中断回调函数
  * @note   This function is called  when TIM4 interrupt took place, inside
  * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
  * a global variable "uwTick" used as application time base.
  *当TIM4中断发生时,在HAL_TIM_IRQHandler()内部调用此函数。 它直接调用HAL_IncTick()来增加一个用作应用程序时基的全局变量“uwTick”
  * @param  htim : TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
  /* USER CODE BEGIN Callback 0 */

  /* USER CODE END Callback 0 */
  if (htim->Instance == TIM4) {
    HAL_IncTick();
  }
  /* USER CODE BEGIN Callback 1 */

  /* USER CODE END Callback 1 */
}

/**
  * @brief  This function is executed in case of error occurrence.
*当错误发生的时候执行这个函数
  * @param  file: The file name as string.
  * @param  line: The line in file as a number.
  * @retval None
  */
void _Error_Handler(char *file, int line)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  while(1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT    
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
	*报告源文件的名称和源行号 发生assert_param(断言参数)错误的地方。
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)
{ 
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

2,分析结构

2-1 包含三个头文件

#include "main.h"           //包含了三个头文件
#include "stm32f1xx_hal.h"
#include "cmsis_os.h"

2-2 定义私有变量
osThreadId          PeriodicHandle;//实时系统的线程(任务)的识别码(身份证)
//osThreadId 》typedef    TaskHandle_t    osThreadId;》typedef void *     TaskHandle_t;

typedef    TaskHandle_t    osThreadId;

注意 #define PI    3.1415926 两个位置相反

typedef    void *     TaskHandle_t  空返回值

typedef void* HANDLE 什么意思

就是用HANDLE来代表void*,也可理解为 HANDLE == void*
void类型的指针表示可以指向任意类型的数据,但是void类型指针不能直接使用,使用前必须先转换成某种确定的类型。

osThreadId  HandlerHandle ->TaskHandle_t   HandlerHandle ->void *   HandlerHandle
//最终的目标还是 TaskHandle_t 手册上看看什么意思osThreadId HandlerHandle;


osSemaphoreId   bSem01Handle;//信号量任务的身份证

osSemaphoreId->typedef SemaphoreHandle_t osSemaphoreId;->typedef QueueHandle_t SemaphoreHandle_t;

->typedef void * QueueHandle_t;
 

注意:在MX中第一任务时,只是第一了task name :Periodic .        而任务句柄PeriodicHandle是自动生成的

2-3 声明私有函数

/* Private function prototypes 私有函数原型 -----------------------------------------------*/
void           SystemClock_Config (void); //系统时钟的配置
static         void MX_GPIO_Init (void);//GPIO的初始化
void           PeriodicTask           (void const * argument);//返回值为空,在MX中设置的函数PeriodicTask声明
void           HandlerTask            (void const * argument);

2-4  int main(void)

先对HAL_Init()、 SystemClock_Config()、 MX_GPIO_Init();初始化配置

再/*  定义和创建信号量bSem01    */
  osSemaphoreDef(bSem01);
  bSem01Handle = osSemaphoreCreate(osSemaphore(bSem01), 1);

/* Create the thread(s) */
  /* definition and creation of Periodic */
    /*定义和创建Periodic任务*/
  osThreadDef(Periodic, PeriodicTask, osPriorityNormal, 0, 128);
  PeriodicHandle = osThreadCreate(osThread(Periodic), NULL);

最后,开始任务调度管理器

3 ,注意CubeMX的封装函数和原生API的区别。

MX下有些函数,原生API下面没有

猜你喜欢

转载自blog.csdn.net/qq_40662854/article/details/82760219