题解:YY的GCD 【莫比乌斯反演】

题意
i = 1 n j = i m [ g c d ( i , j ) = = k ] ( k p r i m a ) 求\sum_{i=1}^n\sum_{j=i}^m [ gcd(i,j)==k ](k\in{prima})
根据莫比乌斯反演的常见套路,我们可以很容易地化到这一步:
k p r i m a d = 1 m i n ( n , m ) μ ( d ) n k d m k d \sum_{k\in{prima}} \sum_{d=1}^{min(n,m)} \mu(d) \lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor
由于这样的枚举最后复杂度是 ( T n l o g n ) (T\sqrt{n}logn) ,肯定会TLE,我们需要考虑如何去优化

T = k d 设T=kd

k p r i m a d = 1 m i n ( n , m ) μ ( d ) n T m T \sum_{k\in{prima}} \sum_{d=1}^{min(n,m)} \mu(d) \lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor

T = 1 m i n ( n , m ) n T m T k T μ ( T k ) \sum_{T=1}^{min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor \sum_{k|T}\mu(\frac{T}{k})
然后后面的 k T μ ( T k ) \sum_{k|T}\mu(\frac{T}{k}) 部分是可以预处理前缀和的,所以整个的复杂度就降到了 T n T\sqrt{n}

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define re register
#define gc getchar()
#define ll long long
inline int read()
{
	re int x(0); re char ch(gc);
	while(ch>'9'||ch<'0') ch=gc;
	while(ch>='0'&&ch<='9') x=(x*10)+(ch^48),ch=gc;
	return x;
}
const int N=1e7+10;
int mu[N],pri[N],sum[N],vis[N],cnt,f[N];
void get_mu(int n)	//线性筛求mu函数
{
	mu[1]=1;
	n-=5;
	for(int i=2;i<=n;++i)
	{
		if(!vis[i])
			mu[i]=-1,pri[++cnt]=i,f[i]=1;
		for(int j=1;j<=cnt&&i*pri[j]<=n;++j)
		{
			vis[i*pri[j]]=1;
			if(i%pri[j]==0) 
			{
				f[i*pri[j]]=mu[i];
				mu[i*pri[j]]=0;
				break;
			}
			else 
				f[i*pri[j]]=-f[i]+mu[i],mu[i*pri[j]]=-mu[i];
		}
		f[i]+=f[i-1];
	}
}
void work()
{
	int a=read(),b=read();
	int n=min(a,b);
	ll ans=0;
	for(int l=1,r;l<=n;l=r+1)	//数论分块优化
	{
		r=min(a/(a/l),b/(b/l));
        ans+=1LL*(f[r]-f[l-1])*(a/l)*(b/l);
	}
	cout<<ans<<endl;
}
int main()
{
	int T=read();
	get_mu(N);
	while(T--) work();
	return 0;
}

一年OI一年WA,不开 long long 见祖宗

猜你喜欢

转载自blog.csdn.net/weixin_43464026/article/details/88550984