Java面试06——集合常考知识点详解及相关源码解析

前言

Java集合是java提供的工具包,包含了常用的数据结构:集合、链表、队列、栈、数组、映射等。
Java集合工具包位置是java.util.*
Java集合主要可以划分为这样几个部分:List列表、Set集合、Map映射、工具类(Iterator迭代器、Enumeration枚举类、Arrays和Collections)。
Java集合工具包框架图(如下):
在这里插入图片描述
大致说明:
看上面的框架图,先抓住它的主干,即Collection和Map

1.Collection是一个接口,是高度抽象出来的集合,它包含了集合的基本操作和属性。Collection包含了List和Set两大分支。

  • List是一个有序的队列,每一个元素都有它的索引。第一个元素的索引值是0。
    List的实现类有LinkedList, ArrayList, Vector, Stack。

  • Set是一个不允许有重复元素的集合。
    Set的实现类有HastSet和TreeSet。HashSet依赖于HashMap,它实际上是通过HashMap实现的;TreeSet依赖于TreeMap,它实际上是通过TreeMap实现的。

2.Map是一个映射接口,即key-value键值对。Map中的每一个元素包含“一个key”和“key对应的value”。

  • AbstractMap是个抽象类,它实现了Map接口中的大部分API。而HashMap,TreeMap,WeakHashMap都是继承于AbstractMap。
  • Hashtable虽然继承于Dictionary,但它实现了Map接口。

接下来,再看Iterator。它是遍历集合的工具,即我们通常通过Iterator迭代器来遍历集合。我们说Collection依赖于Iterator,是因为Collection的实现类都要实现iterator()函数,返回一个Iterator对象。
ListIterator是专门为遍历List而存在的。

再看Enumeration,它是JDK 1.0引入的抽象类。作用和Iterator一样,也是遍历集合;但是Enumeration的功能要比Iterator少。在上面的框图中,Enumeration只能在Hashtable, Vector, Stack中使用。

最后,看Arrays和Collections。它们是操作数组、集合的两个工具类。

有了上面的整体框架之后,我们接下来对每个类分别进行分析。

Collection

在这里插入图片描述

1.Set

TreeSet:基于红黑树实现,支持有序性操作,例如根据一个范围查找元素的操作。但是查找效率不如 HashSet,HashSet 查找的时间复杂度为 O(1),TreeSet 则为 O(logN)。

HashSet:基于散列表实现,支持快速查找,但不支持有序性操作。并且失去了元素的插入顺序信息,也就是说使用 Iterator 遍历 HashSet 得到的结果是不确定的。

LinkedHashSet:具有 HashSet 的查找效率,且内部使用双向链表维护元素的插入顺序。

2.List

ArrayList:基于动态数组实现,支持随机访问。

Vector:和 ArrayList 类似,但它是线程安全的。

LinkedList:基于双向链表实现,只能顺序访问,但是可以快速地在链表中间插入和删除元素。不仅如此,LinkedList 还可以用作栈、队列和双向队列。

3.Queue

LinkedList:可以用它来实现双向队列。
PriorityQueue:基于堆结构实现,可以用它来实现优先队列

Map在这里插入图片描述

TreeMap:基于红黑树实现

HashMap:基于哈希表实现

HashTable:和 HashMap 类似,但它是线程安全的,这意味着同一时刻多个线程可以同时写入 HashTable 并且不会导致数据不一致。它是遗留类,不应该去使用它。
现在可以使用 ConcurrentHashMap 来支持线程安全,并且 ConcurrentHashMap 的效率会更高,因为 ConcurrentHashMap 引入了分段锁。

LinkedHashMap:使用双向链表来维护元素的顺序,顺序为插入顺序或者最近最少使用(LRU)顺序

迭代器

在这里插入图片描述
Collection 继承了 Iterable 接口,其中的 iterator() 方法能够产生一个 Iterator 对象,通过这个对象就可以迭代遍历 Collection 中的元素。

从 JDK 1.5 之后可以使用 foreach 方法来遍历实现了 Iterable 接口的聚合对象。

List<String> list = new ArrayList<>();
list.add("a");
list.add("b");
for (String item : list) {
    System.out.println(item);
}

适配器

这里主要讲的是 asList方法
java.util.Arrays#asList() 可以把数组类型转换为 List 类型

@SafeVarargs
public static <T> List<T> asList(T... a)

应该注意的是 asList() 的参数为泛型的变长参数,不能使用基本类型数组作为参数,只能使用相应的包装类型数组。

Integer[] arr = {1, 2, 3};
List list = Arrays.asList(arr);

也可以使用以下方式调用 asList():

List list = Arrays.asList(1, 2, 3);

常用集合方法源码解析(核心)

如果没有特别说明,以下的源码解析来自于jdk1.8

List类相关集合类

ArrayList

1.概览
实现了 RandomAccess 接口,因此支持随机访问。这是理所当然的,因为 ArrayList 是基于数组实现的。

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable

数组的默认大小为 10。

private static final int DEFAULT_CAPACITY = 10;

2.扩容
添加元素时使用 **ensureCapacityInternal() **方法来保证容量足够,如果不够时,需要使用 grow() 方法进行扩容,新容量的大小为 oldCapacity + (oldCapacity >> 1),也就是旧容量的 1.5 倍。

扩容操作需要调用 Arrays.copyOf() 把原数组整个复制到新数组中,这个操作代价很高,因此最好在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数。

源码如下:

public boolean add(E e) {
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    elementData[size++] = e;
    return true;
}

private void ensureCapacityInternal(int minCapacity) {
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    ensureExplicitCapacity(minCapacity);
}

private void ensureExplicitCapacity(int minCapacity) {
    modCount++;
    // overflow-conscious code
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}

private void grow(int minCapacity) {
    // overflow-conscious code
    int oldCapacity = elementData.length;
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // minCapacity is usually close to size, so this is a win:
    elementData = Arrays.copyOf(elementData, newCapacity);
}

3.删除元素
需要调用 System.arraycopy() 将 index+1 后面的元素都复制到 index 位置上,该操作的时间复杂度为 O(N),可以看出 ArrayList 删除元素的代价是非常高的。

public E remove(int index) {
    rangeCheck(index);
    modCount++;
    E oldValue = elementData(index);
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index, numMoved);
    elementData[--size] = null; // clear to let GC do its work
    return oldValue;
}

4.序列化
ArrayList 基于数组实现,并且具有动态扩容特性,因此保存元素的数组不一定都会被使用,那么就没必要全部进行序列化。

保存元素的数组 elementData 使用 transient 修饰,该关键字声明数组默认不会被序列化。

transient Object[] elementData; // non-private to simplify nested class access

ArrayList 实现了 writeObject() 和 readObject() 来控制只序列化数组中有元素填充那部分内容。

private void readObject(java.io.ObjectInputStream s)
    throws java.io.IOException, ClassNotFoundException {
    elementData = EMPTY_ELEMENTDATA;

    // Read in size, and any hidden stuff
    s.defaultReadObject();

    // Read in capacity
    s.readInt(); // ignored

    if (size > 0) {
        // be like clone(), allocate array based upon size not capacity
        ensureCapacityInternal(size);

        Object[] a = elementData;
        // Read in all elements in the proper order.
        for (int i=0; i<size; i++) {
            a[i] = s.readObject();
        }
    }
}
private void writeObject(java.io.ObjectOutputStream s)
    throws java.io.IOException{
    // Write out element count, and any hidden stuff
    int expectedModCount = modCount;
    s.defaultWriteObject();

    // Write out size as capacity for behavioural compatibility with clone()
    s.writeInt(size);

    // Write out all elements in the proper order.
    for (int i=0; i<size; i++) {
        s.writeObject(elementData[i]);
    }

    if (modCount != expectedModCount) {
        throw new ConcurrentModificationException();
    }
}

序列化时需要使用 ObjectOutputStream 的 writeObject() 将对象转换为字节流并输出。而 writeObject() 方法在传入的对象存在 writeObject() 的时候会去反射调用该对象的 writeObject() 来实现序列化。反序列化使用的是 ObjectInputStream 的 readObject() 方法,原理类似。

ArrayList list = new ArrayList();
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(file));
oos.writeObject(list);

2019.03.13更新 ArrayList中的元素进行排序)
我们在程序编程时经常需要对List中的元素进行一个排序,包括有时候 需要对Map中的元素进行key或者value的排序。一般而言,对于容器中的进行排序,物品们通常用到的时**Collections.sort()方法**

例如下面这个例子:

public static void main(String[] args) {
		ArrayList<Integer> list = new ArrayList();
        list.add(90);
        list.add(68);
        list.add(168);
        list.add(242);
        list.add(317);
        list.add(105);
        // 字符串排序
        Collections.sort(list);		//默认是升序
        System.out.println(list.toString());
        Collections.sort(list, new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o1-o2;   //升序
            }
        });
        System.out.println(list.toString());
        Collections.sort(list, new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2-o1;   //降序
            }
        });
        System.out.println(list.toString());
    }

运行结果:

[68, 90, 105, 168, 242, 317]
[68, 90, 105, 168, 242, 317]
[317, 242, 168, 105, 90, 68]

Vector

1.同步
它的实现与 ArrayList 类似,但是使用了 synchronized 进行同步

public synchronized boolean add(E e) {
    modCount++;
    ensureCapacityHelper(elementCount + 1);
    elementData[elementCount++] = e;
    return true;
}

public synchronized E get(int index) {
    if (index >= elementCount)
        throw new ArrayIndexOutOfBoundsException(index);

    return elementData(index);
}

2.与 ArrayList 的比较(重要!!!)
1.线程安全性不一样
ArrayList是非线程安全;而Vector是线程安全的,它的函数都是synchronized的,即都是支持同步的。
ArrayList适用于单线程,Vector适用于多线程。

Vector 是同步的,因此开销就比 ArrayList 要大,访问速度更慢。最好使用 ArrayList 而不是 Vector,因为同步操作完全可以由程序员自己来控制;

2 对序列化支持不同
ArrayList支持序列化,而Vector不支持;即ArrayList有实现java.io.Serializable接口,而Vector没有实现该接口。

3.扩容大小不同
Vector 每次扩容请求其大小的 2 倍空间,而 ArrayList 是 1.5 倍。

替代方案
可以使用 Collections.synchronizedList(); 得到一个线程安全的 ArrayList。

List list = new ArrayList<>();
List synList = Collections.synchronizedList(list);

也可以使用 concurrent 并发包下的 CopyOnWriteArrayList 类。

List list = new CopyOnWriteArrayList<>();

CopyOnWriteArrayList

读写分离
写操作在一个复制的数组上进行,读操作还是在原始数组中进行,读写分离,互不影响。

写操作需要加锁,防止并发写入时导致写入数据丢失。

写操作结束之后需要把原始数组指向新的复制数组。

public boolean add(E e) {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        Object[] elements = getArray();
        int len = elements.length;
        Object[] newElements = Arrays.copyOf(elements, len + 1);
        newElements[len] = e;
        setArray(newElements);
        return true;
    } finally {
        lock.unlock();
    }
}

final void setArray(Object[] a) {
    array = a;
}
@SuppressWarnings("unchecked")
private E get(Object[] a, int index) {
    return (E) a[index];
}

适用场景
CopyOnWriteArrayList 在写操作的同时允许读操作,大大提高了读操作的性能,因此很适合读多写少的应用场景。

但是 CopyOnWriteArrayList 有其缺陷:
内存占用:在写操作时需要复制一个新的数组,使得内存占用为原来的两倍左右;
数据不一致:读操作不能读取实时性的数据,因为部分写操作的数据还未同步到读数组中。
所以 CopyOnWriteArrayList 不适合内存敏感以及对实时性要求很高的场景。

LinkedList

1.概览
基于双向链表实现,使用 Node 存储链表节点信息。

private static class Node<E> {
    E item;
    Node<E> next;
    Node<E> prev;
}

每个链表存储了 first 和 last 指针:

transient Node<E> first;
transient Node<E> last;

2.与 ArrayList 的比较
ArrayList 基于动态数组实现,LinkedList 基于双向链表实现;
ArrayList 支持随机访问,LinkedList 不支持;
LinkedList 在任意位置添加删除元素更快。

Map相关集合类

Map的定义如下:
public interface Map<K,V> { }

Map 是一个键值对(key-value)映射接口。Map映射中不能包含重复的键;每个键最多只能映射到一个值。
Map 接口提供三种collection 视图,允许以键集、值集或键-值映射关系集的形式查看某个映射的内容。

Map 映射顺序:

  • 有些实现类,可以明确保证其顺序,如 TreeMap;
  • 另一些映射实现则不保证顺序,如 HashMap 类。

Map 的实现类应该提供2个“标准的”构造方法:

  • 第一个,void(无参数)构造方法,用于创建空映射;
  • 第二个,带有单个 Map 类型参数的构造方法,用于创建一个与其参数具有相同键-值映射关系的新映射。

实际上,后一个构造方法允许用户复制任意映射,生成所需类的一个等价映射。尽管无法强制执行此建议(因为接口不能包含构造方法),但是 JDK 中所有通用的映射实现都遵从它。

说明
(01) Map提供接口分别用于返回 键集、值集或键-值映射关系集。
entrySet()用于返回键-值集的Set集合
keySet()用于返回键集的Set集合
values()用户返回值集的Collection集合

因为Map中不能包含重复的键;每个键最多只能映射到一个值。所以,键-值集、键集都是Set,值集时Collection。

(02) Map提供了“键-值对”、“根据键获取值”、“删除键”、“获取容量大小”等方法。

Map.Entry的定义如下:
interface Entry<K,V> { }
Map.Entry是Map中内部的一个接口,Map.Entry是键值对,Map通过 entrySet() 获取Map.Entry的键值对集合,从而通过该集合实现对键值对的操作。

HashMap

具体知识课参考 南国之前写过的一篇博文散列表应用-HashMap讲解

HashMap与HashTable区别

  • 1.HashMap继承于AbstractMap,而Hashtable继承于Dictionary;
  • 2.线程安全不同:Hashtable的几乎所有函数都是同步的,即它是线程安全的,支持多线程。而HashMap的函数则是非同步的,它不是线程安全的。若要在多线程中使用HashMap,需要我们额外的进行同步处理;若要在多线程中使用HashMap,需要我们额外的进行同步处理。 对HashMap的同步处理可以使用Collections类提供的synchronizedMap静态方法,或者直接使用JDK 5.0之后提供的java.util.concurrent包里的ConcurrentHashMap类。
 Map m = Collections.synchronizeMap(hashMap);
  • 3.null值:HashMap的key、value都可以为null。Hashtable的key、value都不可以为null;
  • 4.迭代器(Iterator):HashMap的迭代器(Iterator)是fail-fast迭代器,而Hashtable的enumerator迭代器不是fail-fast的。所以当有其它线程改变了HashMap的结构(增加或者移除元素),将会抛出ConcurrentModificationException。
  • 5.容量的初始值和增加方式都不一样:
    HashMap默认的容量大小是16;增加容量时,每次将容量变为“原始容量x2”;
    Hashtable默认的容量大小是11;增加容量时,每次将容量变为“原始容量x2 + 1”;
  • 6.添加key-value时的hash值算法不同:
    HashMap添加元素时,是使用自定义的哈希算法。
    Hashtable没有自定义哈希算法,而直接采用的key的hashCode()。
  • 7.速度。由于Hashtable是线程安全的也是synchronized,所以在单线程环境下它比HashMap要慢。如果你不需要同步,只需要单一线程,那么使用HashMap性能要好过Hashtable。

ConcurrentHashMap

1.存储结构

static final class HashEntry<K,V> {
    final int hash;
    final K key;
    volatile V value;
    volatile HashEntry<K,V> next;
}

ConcurrentHashMap 和 HashMap 实现上类似,最主要的差别是 ConcurrentHashMap 采用了分段锁(Segment),每个分段锁维护着几个桶(HashEntry),多个线程可以同时访问不同分段锁上的桶,从而使其并发度更高(并发度就是 Segment 的个数)

Segment 继承自 ReentrantLock。

static final class Segment<K,V> extends ReentrantLock implements Serializable {
    private static final long serialVersionUID = 2249069246763182397L;
    static final int MAX_SCAN_RETRIES =
        Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
    transient volatile HashEntry<K,V>[] table;
    transient int count;
    transient int modCount;
    transient int threshold;
    final float loadFactor;
}
final Segment<K,V>[] segments;

默认的并发级别为 16,也就是说默认创建 16 个 Segment。

static final int DEFAULT_CONCURRENCY_LEVEL = 16;

在这里插入图片描述
2. size 操作
每个 Segment 维护了一个 count 变量来统计该 Segment 中的键值对个数。

在执行 size 操作时,需要遍历所有 Segment 然后把 count 累计起来。

ConcurrentHashMap 在执行 size 操作时先尝试不加锁,如果连续两次不加锁操作得到的结果一致,那么可以认为这个结果是正确的。

尝试次数使用 RETRIES_BEFORE_LOCK 定义,该值为 2,retries 初始值为 -1,因此尝试次数为 3。

如果尝试的次数超过 3 次,就需要对每个 Segment 加锁。

/**
 * Number of unsynchronized retries in size and containsValue
 * methods before resorting to locking. This is used to avoid
 * unbounded retries if tables undergo continuous modification
 * which would make it impossible to obtain an accurate result.
 */
static final int RETRIES_BEFORE_LOCK = 2;

public int size() {
    // Try a few times to get accurate count. On failure due to
    // continuous async changes in table, resort to locking.
    final Segment<K,V>[] segments = this.segments;
    int size;
    boolean overflow; // true if size overflows 32 bits
    long sum;         // sum of modCounts
    long last = 0L;   // previous sum
    int retries = -1; // first iteration isn't retry
    try {
        for (;;) {
            // 超过尝试次数,则对每个 Segment 加锁
            if (retries++ == RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    ensureSegment(j).lock(); // force creation
            }
            sum = 0L;
            size = 0;
            overflow = false;
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
                    sum += seg.modCount;
                    int c = seg.count;
                    if (c < 0 || (size += c) < 0)
                        overflow = true;
                }
            }
            // 连续两次得到的结果一致,则认为这个结果是正确的
            if (sum == last)
                break;
            last = sum;
        }
    } finally {
        if (retries > RETRIES_BEFORE_LOCK) {
            for (int j = 0; j < segments.length; ++j)
                segmentAt(segments, j).unlock();
        }
    }
    return overflow ? Integer.MAX_VALUE : size;
}

3.JDK 1.8 的改动
JDK 1.7 使用分段锁机制来实现并发更新操作,核心类为 Segment,它继承自重入锁 ReentrantLock,并发度与 Segment 数量相等。

JDK 1.8 使用了 CAS 操作来支持更高的并发度,在 CAS 操作失败时使用内置锁 synchronized。

并且 JDK 1.8 的实现也在链表过长时会转换为红黑树。

LinkedHashMap

1.存储结构
继承自 HashMap,因此具有和 HashMap 一样的快速查找特性。

public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>

内部维护了一个双向链表,用来维护插入顺序或者 LRU 顺序。

/**
 * The head (eldest) of the doubly linked list.
 */
transient LinkedHashMap.Entry<K,V> head;

/**
 * The tail (youngest) of the doubly linked list.
 */
transient LinkedHashMap.Entry<K,V> tail;

accessOrder 决定了顺序,默认为 false,此时维护的是插入顺序。

final boolean accessOrder;

LinkedHashMap 最重要的是以下用于维护顺序的函数,它们会在 put、get 等方法中调用。

void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }

2.afterNodeAccess()
当一个节点被访问时,如果 accessOrder 为 true,则会将该节点移到链表尾部。也就是说指定为 LRU 顺序之后,在每次访问一个节点时,会将这个节点移到链表尾部,保证链表尾部是最近访问的节点,那么链表首部就是最近最久未使用的节点。

void afterNodeAccess(Node<K,V> e) { // move node to last
    LinkedHashMap.Entry<K,V> last;
    if (accessOrder && (last = tail) != e) {
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a != null)
            a.before = b;
        else
            last = b;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
        tail = p;
        ++modCount;
    }
}

3.afterNodeInsertion()
在 put 等操作之后执行,当 removeEldestEntry() 方法返回 true 时会移除最晚的节点,也就是链表首部节点 first。

evict 只有在构建 Map 的时候才为 false,在这里为 true。

void afterNodeInsertion(boolean evict) { // possibly remove eldest
    LinkedHashMap.Entry<K,V> first;
    if (evict && (first = head) != null && removeEldestEntry(first)) {
        K key = first.key;
        removeNode(hash(key), key, null, false, true);
    }
}

removeEldestEntry() 默认为 false,如果需要让它为 true,需要继承 LinkedHashMap 并且覆盖这个方法的实现,这在实现 LRU 的缓存中特别有用,通过移除最近最久未使用的节点,从而保证缓存空间足够,并且缓存的数据都是热点数据。

protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
    return false;
}

4.LRU 缓存
以下是使用 LinkedHashMap 实现的一个 LRU 缓存:

设定最大缓存空间 MAX_ENTRIES 为 3;
使用 LinkedHashMap 的构造函数将 accessOrder 设置为 true,开启 LRU 顺序;
覆盖 removeEldestEntry() 方法实现,在节点多于 MAX_ENTRIES 就会将最近最久未使用的数据移除。

class LRUCache<K, V> extends LinkedHashMap<K, V> {
    private static final int MAX_ENTRIES = 3;

    protected boolean removeEldestEntry(Map.Entry eldest) {
        return size() > MAX_ENTRIES;
    }

    LRUCache() {
        super(MAX_ENTRIES, 0.75f, true);
    }
}
public static void main(String[] args) {
    LRUCache<Integer, String> cache = new LRUCache<>();
    cache.put(1, "a");
    cache.put(2, "b");
    cache.put(3, "c");
    cache.get(1);
    cache.put(4, "d");
    System.out.println(cache.keySet());
}

[3, 1, 4]

WeakHashMap

1.存储结构
WeakHashMap 的 Entry 继承自 WeakReference,被 WeakReference 关联的对象在下一次垃圾回收时会被回收。

WeakHashMap 主要用来实现缓存,通过使用 WeakHashMap 来引用缓存对象,由 JVM 对这部分缓存进行回收。

private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V>

2.ConcurrentCache
Tomcat 中的 ConcurrentCache 使用了 WeakHashMap 来实现缓存功能

ConcurrentCache 采取的是分代缓存:
1.经常使用的对象放入 eden 中,eden 使用 ConcurrentHashMap 实现,不用担心会被回收(伊甸园);
2.不常用的对象放入 longterm,longterm 使用 WeakHashMap 实现,这些老对象会被垃圾收集器回收。
3.当调用 get() 方法时,会先从 eden 区获取,如果没有找到的话再到 longterm 获取,当从 longterm 获取到就把对象放入 eden 中,从而保证经常被访问的节点不容易被回收。
4.当调用 put() 方法时,如果 eden 的大小超过了 size,那么就将 eden 中的所有对象都放入 longterm 中,利用虚拟机回收掉一部分不经常使用的对象。

public final class ConcurrentCache<K, V> {
    private final int size;
    private final Map<K, V> eden;
    private final Map<K, V> longterm;
    public ConcurrentCache(int size) {
        this.size = size;
        this.eden = new ConcurrentHashMap<>(size);
        this.longterm = new WeakHashMap<>(size);
    }
    public V get(K k) {
        V v = this.eden.get(k);
        if (v == null) {
            v = this.longterm.get(k);
            if (v != null)
                this.eden.put(k, v);
        }
        return v;
    }
    public void put(K k, V v) {
        if (this.eden.size() >= size) {
            this.longterm.putAll(this.eden);
            this.eden.clear();
        }
        this.eden.put(k, v);
    }
}

3.HashMap和WeakHashMap的不同点

  • 1 HashMap实现了Cloneable和Serializable接口,而WeakHashMap没有。
    HashMap实现Cloneable,意味着它能通过clone()克隆自己。
    HashMap实现Serializable,意味着它支持序列化,能通过序列化去传输。

  • 2 HashMap的“键”是“强引用(StrongReference)”,而WeakHashMap的键是“弱引用(WeakReference)”。
    WeakReference的“弱键”能实现WeakReference对“键值对”的动态回收。当“弱键”不再被使用到时,GC会回收它,WeakReference也会将“弱键”对应的键值对删除。
    这个“弱键”实现的动态回收“键值对”的原理呢?其实,通过WeakReference(弱引用)和ReferenceQueue(引用队列)实现的。 首先,我们需要了解WeakHashMap中:
    第一,“键”是WeakReference,即key是弱键。
    第二,ReferenceQueue是一个引用队列,它是和WeakHashMap联合使用的。当弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。 WeakHashMap中的ReferenceQueue是queue。
    第三,WeakHashMap是通过数组实现的,我们假设这个数组是table。

TreeMap

TreeMap 是一个有序的key-value集合,它是通过红黑树实现的。
TreeMap 继承于AbstractMap,所以它是一个Map,即一个key-value集合。
TreeMap 实现了NavigableMap接口,意味着它支持一系列的导航方法。比如返回有序的key集合。
TreeMap 实现了Cloneable接口,意味着它能被克隆。
TreeMap 实现了java.io.Serializable接口,意味着它支持序列化。

TreeMap基于红黑树(Red-Black tree)实现。该映射根据其键的自然顺序进行排序,或者根据创建映射时提供的 Comparator 进行排序,具体取决于使用的构造方法。
TreeMap的基本操作 containsKey、get、put 和 remove 的时间复杂度是 log(n) 。
另外,TreeMap是非同步的。 它的iterator 方法返回的迭代器是fail-fastl的。
在这里插入图片描述
从图中可以看出:
(01) TreeMap实现继承于AbstractMap,并且实现了NavigableMap接口。
(02) TreeMap的本质是R-B Tree(红黑树),它包含几个重要的成员变量: root, size, comparator。
  root 是红黑数的根节点。它是Entry类型,Entry是红黑数的节点,它包含了红黑数的6个基本组成成分:key(键)、value(值)、left(左孩子)、right(右孩子)、parent(父节点)、color(颜色)。Entry节点根据key进行排序,Entry节点包含的内容为value。
  红黑数排序时,根据Entry中的key进行排序;Entry中的key比较大小是根据比较器comparator来进行判断的。
  size是红黑数中节点的个数。

Set相关

经过Map的了解之后,学习Set会容易很多。毕竟,Set的实现类都是基于Map来实现的。

HashSet依赖于HashMap,它实际上是通过HashMap实现的。HashSet中的元素是无序的。
TreeSet依赖于TreeMap,它实际上是通过TreeMap实现的。TreeSet中的元素是有序的。

HashSet

HashSet 是一个没有重复元素的集合。
它是由HashMap实现的,不保证元素的顺序,而且HashSet允许使用 null 元素。
HashSet是非同步的。如果多个线程同时访问一个哈希 set,而其中至少一个线程修改了该 set,那么它必须 保持外部同步。这通常是通过对自然封装该 set 的对象执行同步操作来完成的。如果不存在这样的对象,则应该使用 Collections.synchronizedSet 方法来“包装” set。最好在创建时完成这一操作,以防止对该 set 进行意外的不同步访问:

Set s = Collections.synchronizedSet(new HashSet(...));

HashSet通过iterator()返回的迭代器是fail-fast的。
fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生fail-fast事件。
例如:当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
详情见:
fail-fast总结(通过ArrayList来说明fail-fast的原理、解决办法)

TreeSet

TreeSet 是一个有序的集合,它的作用是提供有序的Set集合。它继承于AbstractSet抽象类,实现了NavigableSet, Cloneable, java.io.Serializable接口。
TreeSet 继承于AbstractSet,所以它是一个Set集合,具有Set的属性和方法。
TreeSet 实现了NavigableSet接口,意味着它支持一系列的导航方法。比如查找与指定目标最匹配项。
TreeSet 实现了Cloneable接口,意味着它能被克隆。
TreeSet 实现了java.io.Serializable接口,意味着它支持序列化。

TreeSet是基于TreeMap实现的。TreeSet中的元素支持2种排序方式:自然排序 或者 根据创建TreeSet 时提供的 Comparator 进行排序。这取决于使用的构造方法。
TreeSet为基本操作(add、remove 和 contains)提供受保证的 log(n) 时间开销。
另外,TreeSet是非同步的。 它的iterator 方法返回的迭代器是fail-fast的。

参考文章:
https://github.com/CyC2018/CS-Notes/blob/master/docs/notes/Java 容器.md#一概览
https://www.cnblogs.com/skywang12345/p/3308498.html

猜你喜欢

转载自blog.csdn.net/weixin_38073885/article/details/86763550
今日推荐