走进JDK(十)------HashMap

有人说HashMap是jdk中最难的类,重要性不用多说了,敲过代码的应该都懂,那么一起啃下这个硬骨头吧!
一、哈希表
在了解HashMap之前,先看看啥是哈希表,首先回顾下数组以及链表
数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),当然,对于有序数组,则可采用二分查找,插值查找,斐波那契查找等方式,可将查找复杂度提高为O(logn);对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)。
线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)。
哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下,仅需一次定位即可完成,时间复杂度为O(1)。
数组查询快的一个主要原因就是每个元素都有对应的index,根据index可以很方便的取数,哈希表的主干则是使用数组结构。来个图:

当插入数据时,首先对要插入的数据进行哈希计算(哈希算法可以说直接影响哈希表性能),得到某个值,这个值也就是代表数据在哈希表中的存储位置。举个例子,当前哈希表的长度为6,那么对于任何的正整数%6,得到的结果肯定是0-5,这小学数学应该就懂了吧!然后将余数作为要插入的位置,进行数据的保存。那就会有人问了,如果不同数据插入时,计算得到的余数相同怎么办?非常好,这就是哈希冲突,或是哈希碰撞。

二、hash冲突(hash碰撞)

哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式。

对于HashMap来说,如果没有出现hash冲突,自然是最好的,找到对应位置直接插入即可;若是存在hash冲突,由于每个位置上存在的其实是链表,往当前链表上加数据。

在jdk1.8之前,hashmap图示如下:

在1.8中,如图:

bucket代表的是桶,也就是当某一个位置上面的节点数大于8时,采用红黑树,否则使用链表。

 jdk1.8之前的hashmap都采用上图的结构,都是基于一个数组和多个单链表,hash值冲突的时候,就将对应节点以链表的形式存储。如果在一个链表中查找其中一个节点时,将会花费O(n)的查找时间,会有很大的性能损失。到了jdk1.8,当同一个hash值的节点数不小于8时,不再采用单链表形式存储,而是采用红黑树。

三、类定义、成员变量、构造函数

1、类定义

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable

 2、成员变量

    private static final long serialVersionUID = 362498820763181265L;
    //初始化容量。左位移4位,也就是2的四次方
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    //最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    //加载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //当桶(bucket)上的结点数大于这个值时会转成红黑树
    static final int TREEIFY_THRESHOLD = 8;
    //当桶(bucket)上的结点数小于这个值时树转链表
    static final int UNTREEIFY_THRESHOLD = 6;
    //桶中结构转化为红黑树对应的table的最小大小
    static final int MIN_TREEIFY_CAPACITY = 64;
    //存储元素的数组,总是2的幂次倍
    transient Node<K,V>[] table;
    //存在所有的entry
    transient Set<Map.Entry<K,V>> entrySet;
    //实际存储的键值对的个数,不等于数组的size
    transient int size;
    //修改次数
    transient int modCount;
    //临界值,当实际大小(容量*填充因子)超过临界值时,会进行扩容
    int threshold;
    //负载因子,代表了table的填充度有多少,默认是0.75
    final float loadFactor;

3、构造函数

    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        //容量不能大于hashMap允许的最大值,超过了不会报错,默认最大值
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //负载因子不能<=0,不能为非数字
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        //这个方法返回大于initialCapacity的最小的二次幂数值。
        this.threshold = tableSizeFor(initialCapacity);
    }
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        //将m的所有元素存入本HashMap实例中。
        putMapEntries(m, false);
    }

 四、内部类

 1、Node

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

2、keySet

    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

3、Values

final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

4、entrySet

final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

五、主要方法

1、put()

    //这个自然是用的最多的方法之一
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    static final int hash(Object key) {
        int h;
        //如果key为null,hash值为0.不为null,获取key的hashcode(),然后将h无符号右位移16位,再与原来的h做异或运算。
        //为啥这么弄?鬼知道。。。但是目的就是为了让散列均匀
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果table为null或者长度为0,首先进行扩容。
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //(n-1)&hash是啥意思呢?目的:获取该对象的键在hashmap中的位置。n表示的是hash桶数组的长度,并且该长度为2的n次方,这样(n-1)&hash就等价于hash%n。因为&运算的效率高于%运算。(n-1)&hash=hash%n有一个前提,就是n为2的次方,比如2、4、8。。。
        如果当前位置为null,说明还没有元素被放在这个位置,所以直接new一个node,放在此位置即可。
        if ((p = tab[i = (n - 1) & hash]) == null)
            //newNode就是new一个node,放入到当前数组的对应位置上。
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            //当前位置已经有node了,也就是出现了hash冲突
            //如果桶中的第一个元素(数组中的结点)的hash值相等,key相等。
            if (p.hash == hash &&
                //判断Key是否与当前存在的node的key值相等
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //判断该链是红黑树
            else if (p instanceof TreeNode)
                //放入红黑树中
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //不是红黑树,肯定就是链表了
            else {
                //在链表的最末端插入节点
                for (int binCount = 0; ; ++binCount) {
                    //如果当前node的next为null,说明当前的节点就是链表的最后一个元素
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //因为bidCount从0开始,所以判断的值为TREEIFY_THRESHOLD - 1,大于TREEIFY_THRESHOLD,转换成红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    //判断链表中结点的key值与插入的元素的key值是否相等。如果有相等的直接跳出循环
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //表示在桶中找到key值、hash值与插入元素相等的结点
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

总结下putVal(),如下:

  • ①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
  • ②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
  • ③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
  • ④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;
  • ⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
  • ⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

2、get()

    //get(key)方法的本质就是根据key值获取到对应的节点,然后将Node的value返回
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            //在hashMap里,(n - 1) & hash = hash % n。证明方法:https://blog.csdn.net/evilcry2012/article/details/88823910
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //链中的第一个节点不符合规定,继续往下找。
            if ((e = first.next) != null) {
                //如果是红黑树的话,查询红黑树的节点,然后返回。红黑树由于本人还不是非常清楚,所以暂不做解释了
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    //这时候就确定为链表结构的数据了,轻车熟路,不多解释了。不清楚的可以看看本人的LinkedList
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

六、思考点

1、为啥HashMap的初始大小为16?并且每次自动扩展或是手动初始化,长度必须为2的幂?

用16当做初始化的数,主要是考虑到key映射到index的hash算法。例如index = Hash("apple"),hash运算要尽量分布均匀,最理想的效果就是在一个hashMap对象put操作时,永远不要有hash冲突,当然一般实现不了。有一种最简单hash运算就是拿hash%length,余数为0~length-1,这种方式可以实现,但是需要把十进制的数转成二进制,效率相对较慢。在jdk8中,jdk大神是这么干的,index = HashCode(Key)&(Length - 1),具体的原因可以看这篇博客:https://blog.csdn.net/evilcry2012/article/details/88823910

2、高并发环境,hashMap可能会出现死锁

可以看下这篇文章:高并发下的HashMap

猜你喜欢

转载自www.cnblogs.com/alimayun/p/10727012.html