LOJ 3093: 洛谷 P5323: 「BJOI2019」光线

题目传送门:LOJ #3093

题意简述:

\(n\) 面玻璃,第 \(i\) 面的透光率为 \(a\),反射率为 \(b\)

问把这 \(n\) 面玻璃按顺序叠在一起后,\(n\) 层玻璃的透光率。

\(0 < a_i \le 1\)\(0 \le b_i < 1\)

题解:

题目中告诉我们,\(n\) 层的玻璃也有透光率,换句话说,多层的玻璃可能可以看作一层。

从这个角度思考,考虑已经求出了前 \(i - 1\) 层玻璃的透光率,如何求出前 \(i\) 层玻璃的透光率。

可以发现已知透光率并不足以进一步求出新的透光率,我们似乎还需要知道反射率。

这时,如果你天真地认为反射率就是从第一面玻璃射入的光的反射率,你就错了。

需要特别注意的是,从第一面和最后一面射入的光的反射率是不相同的。

这是一个很大的坑点,如果注意到了这题就容易了;没注意到就会一直挠头。

总之,我们需要维护两个量:

  1. \(i\) 面玻璃按顺序叠在一起后,光从\(1\) 面玻璃射入时的透光率。

  2. \(i\) 面玻璃按顺序叠在一起后,光从\(i\) 面玻璃射入时的反射率。

分别记为 \(P_i\)\(Q_i\),则不难推出:

\[\begin{aligned}P_i&=P_{i-1}a_i\sum_{k=0}^{\infty}(Q_{i-1}b_i)^k\\Q_i&=Q_{i-1}+Q_{i-1}a_i^2\sum_{k=0}^{\infty}(Q_{i-1}b_i)^k\end{aligned}\]

其中我们发现带有 \(\sum_{k=0}^{\infty}a^k\) 的形式,当 \(|a|<1\) 时,这个无穷级数等于 \(\frac{1}{1-a}\)

所以得到最终的递推式:

\[\begin{aligned}P_i&=\frac{P_{i-1}a_i}{1-Q_{i-1}b_i}\\Q_i&=Q_{i-1}+\frac{Q_{i-1}a_i^2}{1-Q_{i-1}b_i}\end{aligned}\]

先算出 \(\frac{1}{1-Q_{i-1}b_i}\) 可以简化计算。

代码如下:

#include <cstdio>

typedef long long LL;
const int Mod = 1000000007;
const int Inv100 = 570000004;

inline LL Inv(LL b) {
    LL a = 1;
    for (int e = Mod - 2; e; e >>= 1, b = b * b % Mod)
        if (e & 1) a = a * b % Mod;
    return a;
}

int N;
LL P, Q;

int main() {
    scanf("%d", &N);
    P = 1, Q = 0;
    while (N--) {
        LL a, b;
        scanf("%lld%lld", &a, &b);
        a = a * Inv100 % Mod, b = b * Inv100 % Mod;
        LL W = Inv((1 - Q * b % Mod + Mod) % Mod);
        Q = (b + a * a % Mod * Q % Mod * W) % Mod;
        P = P * a % Mod * W % Mod;
    }
    printf("%lld\n", P);
    return 0;
}

题外话:你或许会想,既然反射率不同,透光率是否也不同呢?

然而经过计算,可以得到在每面玻璃两侧的透光率分别相同的情况下,最终两侧的透光率也相同。

这引出了一个有趣的光学原理:可以通过叠加不同的普通玻璃创造出两侧反射率不同的复合玻璃,但是透光率却始终相同。

同时也说明了毛玻璃并不是普通玻璃组合而成的。

猜你喜欢

转载自www.cnblogs.com/PinkRabbit/p/BJOI2019D2T2.html