Android 8.0系统源码分析--Message发送、处理过程源码分析

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_22657459/article/details/78880793

     上节我们分析了应用进程中的Looper和MessageQueue创建过程,接下来我们来看看Message是如何发送到当前的MessageQueue上并且它是如何得到处理的。

     一、Message的发送过程

     发送一个Message对于应用来说,非常简单,就是调用handler.sendMessage方法,就可以将一个封装好的Message发送出去了,或者调用handler.post(Runnable r)也可以,两种调用往下的实现是完全一样的。我们就以sendMessage为入口来看一下Message发送的过程。该方法的实现在Handler.java类中,目录路径为frameworks\base\core\java\android\os\Handler.java,sendMessage方法的源码如下:

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }
	
	
    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
	
	
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }


     参数delayMillis表示当前的Message的延迟时间,上面的逻辑都很简单,最终是调用enqueueMessage来将一条消息入队的,enqueueMessage方法的源码如下:

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

     该方法的第一句就是给当前的message的target赋值,表示该message最终由谁处理,一般我们都会构造自己的handler,所以最终该消息得到分发的时候,目标就是我们重写的handler了,接着调用queue局部变量的enqueueMessage方法来将该message入队,queue局部变量的类型为MessageQueue,它指向的就是执行当前逻辑的Looper对象的mQueue成员变量,也就是上一节我们分析Looper创建过程中创建好的。MessageQueue类的目录路径为frameworks\base\core\java\android\os\MessageQueue.java,enqueueMessage方法的源码如下:

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

     该方法中前面的逻辑的目的就是寻找到一个合适的位置,把当前的message对象挂载进去,上一节我们已经说了MessageQueue类的mMessages成员变量,它的类型为Message,而Message又是一个单向链表,可以不断的往它的成员变量next上指定下一个message,所以只要发送message,就会不断的往上面一个合适的节点挂载。挂载完成后根据局部变量needWake的值来判断是否要唤醒当前的Looper循环,如果我们发送的message需要延迟,而且时间没到,那么就不需要,MessageQueue类的next方法中就会去修改局部变量nextPollTimeoutMillis的值,让Looper循环继续休眠,否则说明消息的处理时间到了,那么就接着调用nativeWake函数来唤醒Looper循环。nativeWake方法的实现在android_os_MessageQueue.cpp文件中,目录路径为frameworks\base\core\jni\android_os_MessageQueue.cpp,nativeWake方法的源码如下:

static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->wake();
}

     这里就是直接调用NativeMessageQueue类的wake方法继续处理,wake方法的源码如下:

void NativeMessageQueue::wake() {
    mLooper->wake();
}

     这里也是直接调用Looper类的wake方法继续处理,Looper类的目录路径为system\core\libutils\Looper.cpp,wake方法的源码如下:

void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ wake", this);
#endif

    uint64_t inc = 1;
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
    if (nWrite != sizeof(uint64_t)) {
        if (errno != EAGAIN) {
            LOG_ALWAYS_FATAL("Could not write wake signal to fd %d: %s",
                    mWakeEventFd, strerror(errno));
        }
    }
}

     这里的逻辑比较简单,就是调用write系统函数往native层的Looper对象初始化时创建的Event文件描述符mWakeEventFd上写入一个整数1,老罗的博客上也说了,这里写入什么内容其实无关紧要,因为该方法的目的是唤醒该线程的Looper循环,而要处理的Message已经保存的MessageQueue对象的成员变量mMessages链表中了。Linux的event机制在发现mWakeEventFd文件描述符上有事件发生时,那么就会从Looper类的pollInner方法中的epoll_wait唤醒,继续处理消息。我们再来看一下Looper类的pollInner方法,源码如下:

int Looper::pollInner(int timeoutMillis) {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);
#endif

    // Adjust the timeout based on when the next message is due.
    if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
        if (messageTimeoutMillis >= 0
                && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
            timeoutMillis = messageTimeoutMillis;
        }
#if DEBUG_POLL_AND_WAKE
        ALOGD("%p ~ pollOnce - next message in %" PRId64 "ns, adjusted timeout: timeoutMillis=%d",
                this, mNextMessageUptime - now, timeoutMillis);
#endif
    }

    // Poll.
    int result = POLL_WAKE;
    mResponses.clear();
    mResponseIndex = 0;

    // We are about to idle.
    mPolling = true;

    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);

    // No longer idling.
    mPolling = false;

    // Acquire lock.
    mLock.lock();

    // Rebuild epoll set if needed.
    if (mEpollRebuildRequired) {
        mEpollRebuildRequired = false;
        rebuildEpollLocked();
        goto Done;
    }

    // Check for poll error.
    if (eventCount < 0) {
        if (errno == EINTR) {
            goto Done;
        }
        ALOGW("Poll failed with an unexpected error: %s", strerror(errno));
        result = POLL_ERROR;
        goto Done;
    }

    // Check for poll timeout.
    if (eventCount == 0) {
#if DEBUG_POLL_AND_WAKE
        ALOGD("%p ~ pollOnce - timeout", this);
#endif
        result = POLL_TIMEOUT;
        goto Done;
    }

    // Handle all events.
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);
#endif

    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        if (fd == mWakeEventFd) {
            if (epollEvents & EPOLLIN) {
                awoken();
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
            }
        } else {
            ssize_t requestIndex = mRequests.indexOfKey(fd);
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
                        "no longer registered.", epollEvents, fd);
            }
        }
    }
Done: ;

    // Invoke pending message callbacks.
    mNextMessageUptime = LLONG_MAX;
    while (mMessageEnvelopes.size() != 0) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
            // Remove the envelope from the list.
            // We keep a strong reference to the handler until the call to handleMessage
            // finishes.  Then we drop it so that the handler can be deleted *before*
            // we reacquire our lock.
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();

#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
                ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
                        this, handler.get(), message.what);
#endif
                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = POLL_CALLBACK;
        } else {
            // The last message left at the head of the queue determines the next wakeup time.
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }

    // Release lock.
    mLock.unlock();

    // Invoke all response callbacks.
    for (size_t i = 0; i < mResponses.size(); i++) {
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
                    this, response.request.callback.get(), fd, events, data);
#endif
            // Invoke the callback.  Note that the file descriptor may be closed by
            // the callback (and potentially even reused) before the function returns so
            // we need to be a little careful when removing the file descriptor afterwards.
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd, response.request.seq);
            }

            // Clear the callback reference in the response structure promptly because we
            // will not clear the response vector itself until the next poll.
            response.request.callback.clear();
            result = POLL_CALLBACK;
        }
    }
    return result;
}

     当epoll_wait逻辑返回时,就会得到当前的消息数量eventCount,当前场景下,该值大于0,那么就会在for (int i = 0; i < eventCount; i++) 循环中取消息进行处理,当前事件的fd、epollEvents分别为mWakeEventFd、EPOLLIN,它们都是在Looper对象初始化时,在rebuildEpollLocked方法中构造struct epoll_event eventItem结构体时赋值的,所以就执行awoken函数,该函数的源码如下:

void Looper::awoken() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ awoken", this);
#endif

    uint64_t counter;
    TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
}

     该函数就是调用系统函数read将产生在mWakeEventFd文件描述符上的事件读取出来,清空管道,以免事件重复。pollInner方法中下面的逻辑就是判断mResponses中是否有回调需要处理,处理完成后就会一层层返回到Java层的MessageQueue类的next方法中了,那么下次再从mMessages链表中取消息时,就会有消息了。

     二、Message的处理过程

     经过上面的分析,我们知道当Looper循环中有消息需要处理时,那么MessageQueue类的next方法就会去找当前需要处理的Message消息,MessageQueue类的next方法的源码如下:

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

     它就是在当前的链表中查找是否有合适的Message,找到的话,就返回当前的Message对象,该方法返回后就会到Looper类的loop方法的无限循环中,Looper类的loop方法的源码如下:

    /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (; ; ) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

     Message msg = queue.next()逻辑返回后,我们就拿到的当前需要处理的msg,如果msg为空,那么loop方法也就结束了,说明没有该Looper循环已经完成使命了。所以大家可以回头看一下MessageQueue类的next方法,只有在mQuitting为true时才会返回null,其他场景下要么找到合适的msg进行处理,要么就是执行nativePollOnce进入休眠,拿到了目标msg,接着就调用sg.target.dispatchMessage(msg)对它进行处理,当前msg的成员变量target就是前面它的发送过程中赋值的,target的类型为Handler,我们接着来看一下Handler类的dispatchMessage方法,Handler类的的目录路径为:frameworks\base\core\java\android\os\Handler.java,dispatchMessage方法的源码如下:

    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

     首先判断当前msg的回调接口callback是否为空,如果不为空,则调用handleCallback处理,Message类的成员变量callback的类型为Runnable,也就是调用它的run方法去执行我们自己的逻辑,这里也就是发送message时,我们调用handler.post(Runnable run)对应上了;如果当前Message的callback为空,那么继续判断当前Handler的成员变量mCallback是否为空,该成员变量是在Handler对象的构造方法中传入的,相当于系统给我们多预留了一个出口,我们可以把当前Handler上所有的消息取出来放在自己定义的Callback中去处理,如果mCallback也为空,那么就调用handleMessage去处理了,我们一般也就是要重写该方法来处理我们自己的逻辑。

     这里还需要说明一点,之前有些项目中,我有看到有些同事直接重写Handler类的dispatchMessage方法,这样其实很不妥,从上面的处理过程可以看到,系统给我们预留了足够多的地方去处理message,而dispatchMessage方法是从Looper类回调过来的入口,假如我们按照一般的逻辑去判断msg.what进行消息处理,那么就会导致那些post的消息无法分发了,所以还是老老实实重写handleMessage方法就可以了。

     好,Looper、MessageQueue的消息循环我们就分析到这里了。

猜你喜欢

转载自blog.csdn.net/sinat_22657459/article/details/78880793