矩阵分解相关知识点总结

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lixujie666/article/details/85010089

〇、Gauss消去法

  对于 n n 元线性方程组
(0) A x = b \bm{A}\bm{x}=\bm{b}\tag{0}

其中, A = ( a i j ) n × n \bm{A}=(a_{ij})_{n \times n} x = ( ξ 1 , ξ 2 ,   , ξ n ) T \bm{x}=(\xi_1,\xi_2,\cdots,\xi_n)^{\rm T} b = ( b 1 , b 2 ,   , b n ) T \bm{b}=(b_1,b_2,\cdots,b_n)^{\rm T} 。Gauss消去法的基本思想是化系数矩阵 A \textbf{\textit{A}} 为上三角矩阵,或化增广矩阵 [ A b ] \left[\begin{array}{c|c}\bm{A}&\bm{b}\end{array}\right] 为上阶梯形矩阵以求其解,这个过程就叫Gauss消元。

  Gauss消元过程能够进行到底的条件是当且仅当 A \bm{A} 的各阶顺序主子式都不为零,即:
Δ r 0 ( r = 1 , 2 ,   , n 1 ) \color{#F0F}\Delta_r\neq0\quad(r=1,2,\cdots,n-1)

一、矩阵的三角分解

{ A = L D U LDU分解 A = L ( D U ) = L U ^ Doolittle分解 A = ( L D ) U = L ^ U Crout分解 三角分解 \begin{cases} A=LDU& \text {LDU分解} \\ A=L(DU)=L\hat U & \text {Doolittle分解}\\A=(LD)U=\hat LU& \text {Crout分解} \end{cases}

  三角分解又称作LU分解或LR分解。在上式中, L L 是单位下三角矩阵, D D 是对角矩阵, U U 是单位上三角矩阵

分解过程:
(1) A = A ( 0 ) = L 1 A ( 1 ) = L 1 L 2 A ( 2 ) = = L 1 L 2 L n 1 A ( n 1 ) = L A ( n 1 ) \color{#F00}A=A^{(0)}=L_1A^{(1)}=L_1L_2A^{(2)}=\cdots=L_1L_2\cdots L_{n-1}A^{(n-1)}=LA^{(n-1)} \tag{1}

L 1 = [ 1 c 21 1 c n 1 1 ] L_1=\begin{bmatrix} 1 \\c_{21} & 1 \\ \vdots & & \ddots \\c_{n1} & & & 1 \end{bmatrix} L 2 = [ 1 1 c 32 1 c n 2 1 ] L_2=\begin{bmatrix} 1 \\ & 1 \\ & c_{32} & 1 \\ & \vdots & & \ddots\\ & c_{n2} & & & 1\end{bmatrix} \cdots L r = [ 1 1 c r + 1 , r 1 c n r 1 ] L_r=\begin{bmatrix} 1 \\ & \ddots \\ & & 1 \\ & & c_{r+1,r} & 1\\ & & \vdots & &\ddots \\ & & c_{nr} & & & 1\end{bmatrix} L n 1 = [ 1 1 1 c n , n 1 1 ] L_{n-1}=\begin{bmatrix} 1 \\ & 1 \\ & & \ddots \\ & & & 1\\ & & & c_{n,n-1} & 1\end{bmatrix} Frobenius矩阵,其中空白处全为   0   \,0\, c i r = a i r ( r 1 ) a r r ( r 1 ) , ( r = 1 , 2 ,   , n 1 ) , ( i = r + 1 , r + 2 ,   , n ) \color{#F0F}c_{ir}=\cfrac{a_{ir}^{(r-1)}}{a_{rr}^{(r-1)}},(r=1,2,\cdots,n-1),(i=r+1,r+2,\cdots,n) L r 1 = [ 1 1 c r + 1 , r 1 c n r 1 ] L_r^{-1}=\begin{bmatrix} 1 \\ & \ddots \\ & & 1 \\ & & -c_{r+1,r} & 1\\ & & \vdots & &\ddots \\ & & -c_{nr} & & & 1\end{bmatrix}

L = L 1 L 2 L ( n 1 ) = [ 1 c 21 1 c n 1 , 1 c n 1 , 2 1 c n 1 c n 2 c n , n 1 1 ] L=L_1L_2\cdots L_{(n-1)}=\begin{bmatrix} 1 \\[2ex] c_{21} & 1 \\[2ex] \vdots & \vdots & \ddots \\[2ex] c_{n-1,1} & c_{n-1,2} & \cdots & 1 \\[2ex] c_{n1} & c_{n2} & \cdots & c_{n,n-1} & 1\end{bmatrix} 是一个单位下三角矩阵, A ( n 1 ) = L n 1 1 L 2 1 L 1 1 A ( 0 ) = L 1 A A^{(n-1)}=L_{n-1}^{-1}\cdots L_2^{-1}L_1^{-1}A^{(0)}=L^{-1}A 是一个上三角矩阵,可以分解成一个对角矩阵( D D )和一个单位上三角矩阵( U U )。

二、矩阵的Cholesky分解

  当 A A 为实对称正定矩阵时,有
A = L D U = A T = ( L D U ) T = U T D L T , D = d i a g ( d 1 , d 2 ,   , d n ) A=LDU=A^{\text T}=(LDU)^{\rm T}=U^{\rm T}DL^{\rm T},\quad D={\rm{diag}}(d_1,d_2,\cdots,d_n)

即有: L = U T L=U^{\rm T} U = L T U=L^{\rm T} ,令 D ~ = d i a g ( d 1 , d 2 ,   , d n ) \tilde D={\rm{diag}}(\sqrt{d_1},\sqrt{d_2},\cdots,\sqrt{d_n}) ,则有:
(2) A = L D L T = L D ~ 2 L T = ( L D ~ ) ( D ~ L T ) = ( L D ~ ) ( L D ~ ) T = G G T \color{#F00}A=LDL^{\rm T}=L\tilde D^2L^{\rm T}=(L\tilde D)(\tilde DL^{\rm T})=(L\tilde D)(L\tilde D)^{\rm T}=GG^{\rm T}\tag{2}

其中, G = L D ~ G=L\tilde D 为下三角矩阵。上式即为矩阵的Cholesky分解,又称平方根分解或对称三角分解

  Cholesky分解过程中,可以根据以下递推公式计算 G G 矩阵中每个元素的值:
g i j = { ( a i i k = 1 i 1 g i k 2 ) 1 / 2 ( i = j ) 1 g j j ( a i j k = 1 j 1 g i k g j k ) ( i > j ) 0 ( i < j ) \color{#F0F}g_{ij}=\begin{cases} (a_{ii}-\sum\limits_{k=1}^{i-1}g_{ik}^2)^{1/2} & (i=j) \\[2ex] \cfrac{1}{g_{jj}}(a_{ij}-\sum\limits_{k=1}^{j-1}g_{ik}g_{jk}) &(i>j) \\[2ex] \quad0 & (i<j) \end{cases}

当然也可以先对矩阵 A A 做LDU分解,然后取 G = L D ~ G=L\tilde D

三、矩阵的QR分解

3.1、Givens矩阵与Givens变换

  设非零列向量 x R n \bm{x}\in {\bf{R}}^n 及单位列向量 z R n \bm{z}\in {\bf{R}}^n ,存在有限个Givens矩阵的乘积,记作 T \bm{T} ,使得
(3) T x = x z \color{#F00}\bm{T}\bm{x}=|\bm{x}|\bm{z}\tag{3}

上式即为Givens变换,也称初等旋转变换,其中Givens矩阵,也称初等旋转矩阵,记作 T i j = T i j ( c , s ) = [ I c s I s c I ] \color{#F0F}\bm{T}_{ij}=\bm{T}_{ij}(c,s)=\begin{bmatrix} \bm{I} \\[1ex] & c & & s & \\[1.2ex] & & \bm{I} \\[1.2ex] & -s& & c \\[1.2ex] & & & & \bm{I} \end{bmatrix} T = T 1 n T 1 , n 1 T 13 T 12 \bm{T}=\bm{T}_{1n}\bm{T}_{1,n-1}\cdots \bm{T}_{13}\bm{T}_{12}

  对于非零列向量 x = ( ξ 1 , ξ 2 ,   , ξ n ) T \bm{x}=(\xi_1,\xi_2,\cdots,\xi_n)^{\rm T} ,及单位列向量 z = e 1 = ( 1 , 0 ,   , 0 ) T \bm{z}=\bm{e}_1=(1,0,\cdots,0)^{\rm T} ,其Givens变换过程如下:

  • 首先对 x \bm{x} 构造Givens矩阵 T 12 ( c , s ) = [ c s s c I ] \bm{T}_{12}(c,s)=\begin{bmatrix} c&s \\-s & c\\ & & \bm{I} \end{bmatrix} ,其中 c = ξ 1 ξ 1 2 + ξ 2 2   ,   s = ξ 2 ξ 1 2 + ξ 2 2 c=\cfrac{\xi_1}{\sqrt{\xi_1^2+\xi_2^2}}\,,\,s=\cfrac{\xi_2}{\sqrt{\xi_1^2+\xi_2^2}} ,有
    T 12 x = ( ξ 1 2 + ξ 2 2 , 0 , ξ 3 ,   , ξ n ) T \bm{T}_{12}\bm{x}=(\sqrt{\xi_1^2+\xi_2^2},0,\xi_3,\cdots,\xi_n)^{\rm T}

  • 再对 T 12 x \bm{T}_{12}\bm{x} 构造Givens矩阵 T 13 ( c , s ) = [ c s 1 s c I ] \bm{T}_{13}(c,s)=\begin{bmatrix} c& &s \\ &1& \\-s & & c\\ & & & \bm{I} \end{bmatrix} ,其中 c = ξ 1 2 + ξ 2 2 ξ 1 2 + ξ 2 2 + ξ 3 2   ,   s = ξ 3 ξ 1 2 + ξ 2 2 + ξ 3 2 c=\cfrac{\sqrt{\xi_1^2+\xi_2^2}}{\sqrt{\xi_1^2+\xi_2^2+\xi_3^2}}\,,\,s=\cfrac{\xi_3}{\sqrt{\xi_1^2+\xi_2^2+\xi_3^2}} ,有
    T 13 ( T 12 x ) = ( ξ 1 2 + ξ 2 2 + ξ 3 2 , 0 , 0 , ξ 4 ,   , ξ n ) T \bm{T}_{13}(\bm{T}_{12}\bm{x})=(\sqrt{\xi_1^2+\xi_2^2+\xi_3^2},0,0,\xi_4,\cdots,\xi_n)^{\rm T}

  • 如此下去,最后对 T 1 , n 1 T 1 , n 2 T 13 T 12 x \bm{T}_{1,n-1}\bm{T}_{1,n-2}\cdots \bm{T}_{13}\bm{T}_{12}\bm{x} 构造Givens矩阵 T 1 n ( c , s ) = [ c s I s c ] \bm{T}_{1n}(c,s)=\begin{bmatrix} c& &s \\ & \bm{I}& \\-s & & c \end{bmatrix} ,其中 c = ξ 1 2 + + ξ n 1 2 ξ 1 2 + ξ 2 2 + + ξ n 1 2 + ξ n 2   ,   s = ξ n ξ 1 2 + ξ 2 2 + + ξ n 1 2 + ξ n 2 \color{#F0F}c=\cfrac{\sqrt{\xi_1^2+\cdots+\xi_{n-1}^2}}{\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2}}\,,\,s=\cfrac{\xi_n}{\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2}} ,有
    T 1 n ( T 1 , n 1 T 12 x ) = ( ξ 1 2 + ξ 2 2 + + ξ n 1 2 + ξ n 2 , 0 ,   , 0 ) T \bm{T}_{1n}(\bm{T}_{1,n-1}\cdots \bm{T}_{12}\bm{x})=(\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2},0,\cdots,0)^{\rm T}

T = T 1 n T 1 , n 1 T 12 \bm{T}=\bm{T}_{1n}\bm{T}_{1,n-1}\cdots \bm{T}_{12} ,有 T x = x z = x e 1 \bm{T}\bm{x}=|\bm{x}|\bm{z}=|\bm{x}|\bm{e}_1 ,即通过有限个Givens矩阵 T   \bm{T}\, x   \bm{x}\, 变换为与 z   \bm{z}\, 同方向的向量。

3.2、Householder矩阵与Householder变换

  任意给定非零列向量 x R n    ( n > 1 ) \bm{x}\in {\bf{R}}^n\;(n>1) 及单位列向量 z R n \bm{z}\in {\bf{R}}^n ,则存在矩阵 H \bm{H} ,使得
(4) H = x z \color{#F00}\bm{H}=|\bm{x}|\bm{z}\tag{4}

上式即为Householder变换,也称初等反射变换,其中 H = I 2 u u T \color{#F0F}\bm{H}=\bm{I}-2\bm{uu}^{\rm T} ,为Householder矩阵,也称初等反射矩阵

  对于非零列向量 x = ( ξ 1 , ξ 2 ,   , ξ n 1 , ξ n ) T \bm{x}=(\xi_1,\xi_2,\cdots,\xi_{n-1},\xi_n)^{\rm T} 及单位列向量 z = e 1 = ( 1 , 0 ,   , 0 ) T \bm{z}=\textbf{\textit{e}}_1=(1,0,\cdots,0)^{\rm T} ,其Householder变换过程如下:

  取 u = x x z x x z = x x e 1 x x e 1 \color{#F0F}\bm{u}=\cfrac{\bm{x}-|\bm{x}|\bm{z}}{|\bm{x}-|\bm{x}|\bm{z}|}=\cfrac{\bm{x}-|\bm{x}|\bm{e}_1}{|\bm{x}-|\bm{x}|\bm{e}_1|} ,其中 x = ξ 1 2 + ξ 2 2 + + ξ n 1 2 + ξ n 2 |\bm{x}|=\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2} ,则 H = I 2 u u T \bm{H}=\bm{I}-2\bm{uu}^{\rm T} H x = x z = x e 1 \bm{Hx}=|\bm{x}|\bm{z}=|\bm{x}|\bm{e}_1 ,即通过Householder矩阵 H   \bm{H}\, x   \bm{x}\, 变换为与 z   \bm{z}\, 同方向的向量。

Givens矩阵 T i j   \textbf{\textit{T}}_{ij}\, 具有如下性质 Householder矩阵 H   \textbf{\textit{H}}\, 具有如下性质
(1) T i j = T i j T = T i j 1 \bm{T}_{ij}=-\bm{T}_{ij}^{\rm T}=-\bm{T}_{ij}^{-1} H = H T = H 1 \bm{H}=\bm{H}^{\rm T}=\bm{H}^{-1}
(2) T i j 2 = T i j T T i j = T i j 1 T i j = I \bm{T}_{ij}^{2}=-\bm{T}_{ij}^{\rm T}\bm{T}_{ij}=-\bm{T}_{ij}^{-1}\bm{T}_{ij}=-\bm{I} H 2 = H T H = H 1 H = I \bm{H}^2=\bm{H}^{\rm T}\bm{H}=\bm{H}^{-1}\bm{H}=\bm{I}
(3) d e t T i j = 1 \rm{det}\bm{T}_{ij}=1 d e t H = 1 \rm{det}\bm{H}=-1

(5) T i j = H v H u \color{#F00}初等旋转矩阵是两个初等反射矩阵的乘积,即有\bm{T}_{ij}=\bm{H}_v\bm{H}_u\tag{5}

3.3、QR分解

  设 A A m × n m\times n 实(复)矩阵,且其 n n 个列线性无关,则 A A 有分解
(6) A = Q R \color{#F00}A=QR\tag{6}

其中 Q Q m × n m\times n 实(复)矩阵,且满足 Q T Q = I Q^{\text T}Q=I Q H Q = I Q^{\text H}Q=I ), R R n n 阶实(复)可逆上三角矩阵。上式即为矩阵的QR分解,也称正交三角分解,该分解除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外是唯一的。

  对于任意的 n n 阶实可逆矩阵 A = ( a i j ) n × n A=(a_{ij})_{n \times n} ,均可通过左连乘Givens矩阵(初等旋转矩阵)或左连乘Householder矩阵(初等反射矩阵),将其化为可逆上三角矩阵。

  完成矩阵的QR分解有三种常用的方法:Schmidt正交化方法,Givens变换方法和Householder变换方法。下面通过一个具体实例,将矩阵 A = [ 1 2 2 2 1 2 1 2 1 ] A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} 分别用上述三种方法进行QR分解。

Schmidt正交化方法:

  令 a 1 = ( 1 , 2 , 1 ) T ,   a 2 = ( 2 , 1 , 2 ) T ,   a 3 = ( 2 , 2 , 1 ) T \bm{a}_1=(1,2,1)^{\rm T},\,\bm{a}_2=(2,1,2)^{\rm T},\,\bm{a}_3=(2,2,1)^{\rm T} ,将其Schmidt正交化可得:
b 1 = a 1 = ( 1 , 2 , 1 ) T b 2 = a 2 ( a 2 , b 1 ) ( b 1 , b 1 ) b 1 = a 2 b 1 = ( 1 , 1 , 1 ) T b 3 = a 3 ( a 3 , b 1 ) ( b 1 , b 1 ) b 1 ( a 3 , b 2 ) ( b 2 , b 2 ) b 2 = a 3 1 3 b 2 7 6 b 1 = ( 1 2 , 0 , 1 2 ) T \begin{array}{l}\bm{b}_1=\bm{a}_1=(1,2,1)^{\rm T}\\[2ex] \bm{b}_2=\bm{a}_2-\cfrac{(\bm{a}_2,\bm{b}_1)}{(\bm{b}_1,\bm{b}_1)}\bm{b}_1=\bm{a}_2-\bm{b}_1=(1,-1,1)^{\rm T}\\[2ex] \bm{b}_3=\bm{a}_3-\cfrac{(\bm{a}_3,\bm{b}_1)}{(\bm{b}_1,\bm{b}_1)}\bm{b}_1-\cfrac{(\bm{a}_3,\bm{b}_2)}{(\bm{b}_2,\bm{b}_2)}\bm{b}_2=\bm{a}_3-\cfrac{1}{3}\bm{b}_2-\cfrac{7}{6}\bm{b}_1=(\cfrac{1}{2},0,-\cfrac{1}{2})^{\rm T}\end{array}

进而有:
( a 1 , a 2 , a 3 ) = ( b 1 , b 2 , b 3 ) C = ( b 1 , b 2 , b 3 ) [ 1 1 7 6 0 1 1 3 0 0 1 ] (\bm{a}_1,\bm{a}_2,\bm{a}_3)= (\bm{b}_1,\bm{b}_2,\bm{b}_3)\cdot C=(\bm{b}_1,\bm{b}_2,\bm{b}_3) \begin{bmatrix} 1 & 1 & \cfrac{7}{6} \\[2ex] 0 & 1 & \cfrac{1}{3} \\[2ex] 0 & 0 & 1 \end{bmatrix}

  取:
q 1 = 1 b 1 b 1 = 1 6 ( 1 , 2 , 1 ) T q 2 = 1 b 2 b 2 = 1 3 ( 1 , 1 , 1 ) T q 3 = 1 b 3 b 3 = 1 2 ( 1 , 0 , 1 ) T \begin{array}{l}\bm{q}_1=\cfrac{1}{|\bm{b}_1|}|\bm{b}_1|=\cfrac{1}{\sqrt{6}}(1,2,1)^{\rm T}\\[2ex] \bm{q}_2=\cfrac{1}{|\bm{b}_2|}|\bm{b}_2|=\cfrac{1}{\sqrt{3}}(1,-1,1)^{\rm T}\\[2ex] \bm{q}_3=\cfrac{1}{|\bm{b}_3|}|\bm{b}_3|=\cfrac{1}{\sqrt{2}}(1,0,-1)^{\rm T}\end{array}

  令:
Q = ( q 1 , q 2 , q 3 ) = [ 1 6 1 3 1 2 2 6 1 3 0 1 6 1 3 1 2 ] R = d i a g ( b 1 , b 2 , b 3 ) C = [ 6 0 0 0 3 0 0 0 2 ] [ 1 1 7 6 0 1 1 3 0 0 1 ] = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] \begin{array}{l} Q=(\bm{q}_1,\bm{q}_2,\bm{q}_3)= \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix}\\ R=\rm{diag}(|\bm{b}_1|,|\bm{b}_2|,|\bm{b}_3|)\cdot C= \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 1 & \cfrac{7}{6} \\[2ex] 0 & 1 & \cfrac{1}{3} \\[2ex] 0 & 0 & 1 \end{bmatrix}= \begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\[2ex] 0 & \sqrt{3} & \cfrac{1}{\sqrt{3}} \\[2ex] 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix} \end{array}

则有 A = Q R A=QR

Givens变换方法:
  第1步,对 A ( 0 ) = A = [ 1 2 2 2 1 2 1 2 1 ] A^{(0)}=A=\left[\begin{array}{c:cc}1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{array}\right] 的第1列 b ( 1 ) = [ 1 2 1 ] \bm{b}^{(1)}=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} 构造旋转矩阵 T 1 T_1 ,使 T 1 b ( 1 ) = b ( 1 ) e 1 T_1\bm{b}^{(1)}=|\bm{b}^{(1)}|\bm{e}_1

T 1 = T 13 T 12 = [ 5 6 0 1 6 0 1 0 1 6 0 5 6 ] [ 1 5 2 5 0 2 5 1 5 0 0 0 1 ] = [ 1 6 2 6 1 6 2 5 1 5 0 1 30 2 30 5 6 ] T_1=T_{13}T_{12}=\begin{bmatrix} \cfrac{\sqrt{5}}{\sqrt{6}} & 0 & \cfrac{1}{\sqrt{6}} \\ 0 & 1 & 0 \\ -\cfrac{1}{\sqrt{6}} & 0 & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{5}} & \cfrac{2}{\sqrt{5}} & 0 \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ 0 & 0 & 1 \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix}

T 1 b ( 1 ) = [ 1 6 2 6 1 6 2 5 1 5 0 1 30 2 30 5 6 ] [ 1 2 1 ] = [ 6 0 0 ] T_{1}\bm{b}^{(1)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=\begin{bmatrix} \sqrt{6} \\ 0 \\ 0 \end{bmatrix}

T 1 A ( 0 ) = [ 1 6 2 6 1 6 2 5 1 5 0 1 30 2 30 5 6 ] [ 1 2 2 2 1 2 1 2 1 ] = [ 6 6 7 6 0 3 5 2 5 0 6 30 1 30 ] T_{1}A^{(0)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1&2&2 \\ 2&1&2 \\ 1&2&1 \end{bmatrix} =\left[\begin{array}{c:cc} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\\hdashline 0 & -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ 0 & \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{array}\right]

  第2步,对 A ( 1 ) = [ 3 5 2 5 6 30 1 30 ] A^{(1)}=\left[\begin{array}{c:c} -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{array}\right] 的第1列 b ( 2 ) = [ 3 5 6 30 ] \bm{b}^{(2)}=\begin{bmatrix} -\cfrac{3}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} \end{bmatrix} 构造旋转矩阵 T 2 T_2 ,使 T 2 b ( 2 ) = b ( 2 ) e 1 T_2\bm{b}^{(2)}=|\bm{b}^{(2)}|\bm{e}_1

T 2 = T 12 = [ 3 5 2 10 2 10 3 5 ] T_2=T_{12}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix}

T 2 b ( 2 ) = [ 3 5 2 10 2 10 3 5 ] [ 3 5 6 30 ] = [ 3 0 ] T_2\bm{b}^{(2)}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\cfrac{3}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} \\ 0 \end{bmatrix}

T 2 A ( 1 ) = [ 3 5 2 10 2 10 3 5 ] [ 3 5 2 5 6 30 1 30 ] = [ 3 1 3 0 1 2 ] T_2A^{(1)}=\begin{bmatrix} -\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ -\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} -\cfrac{3}{\sqrt{5}} & -\cfrac{2}{\sqrt{5}} \\ \cfrac{6}{\sqrt{30}} & -\cfrac{1}{\sqrt{30}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix}

  最后,令
T = [ 1 O T O T 2 ] T 1 = [ 1 0 0 0 3 5 2 10 0 2 10 3 5 ] [ 1 6 2 6 1 6 2 5 1 5 0 1 30 2 30 5 6 ] = [ 1 6 2 6 1 6 1 3 1 3 1 3 1 2 0 1 2 ] T=\begin{bmatrix}1&O^{\text T}\\[2ex]O&T_2\end{bmatrix}T_1 =\begin{bmatrix} 1&0&0\\0&-\cfrac{\sqrt{3}}{\sqrt{5}} & \cfrac{2}{\sqrt{10}} \\ 0&-\cfrac{2}{\sqrt{10}} & -\cfrac{\sqrt{3}}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{2}{\sqrt{5}} & \cfrac{1}{\sqrt{5}} & 0 \\ -\cfrac{1}{\sqrt{30}} & -\cfrac{2}{\sqrt{30}} & \cfrac{\sqrt{5}}{\sqrt{6}} \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{2}} & 0 & -\cfrac{1}{\sqrt{2}} \end{bmatrix}

Q = T T = = [ 1 6 1 3 1 2 2 6 1 3 0 1 6 1 3 1 2 ] , R = T A = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] Q=T^{\text T}= =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix},\quad R=TA=\begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\ 0 & {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix}

则有 A = Q R A=QR

Householder变换方法:
  第1步,对 A ( 0 ) = A = [ 1 2 2 2 1 2 1 2 1 ] A^{(0)}=A=\left[\begin{array}{c:cc}1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{array}\right] 的第1列 b ( 1 ) = [ 1 2 1 ] \bm{b}^{(1)}=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} 构造Householder矩阵 H 1 H_1 ,使 H 1 b ( 1 ) = b ( 1 ) e 1 H_1\bm{b}^{(1)}=|\bm{b}^{(1)}|\bm{e}_1
b ( 1 ) b ( 1 ) e 1 = [ 1 2 1 ] 6 [ 1 0 0 ] = [ 1 6 2 1 ] \bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}-\sqrt{6}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}=\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix}

u = b ( 1 ) b ( 1 ) e 1 b ( 1 ) b ( 1 ) e 1 = 1 12 2 6 [ 1 6 2 1 ] \bm{u}=\cfrac{\bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1}{|\bm{b}^{(1)}-|\bm{b}^{(1)}|\bm{e}_1|}= \cfrac{1}{\sqrt{12-2\sqrt{6}}}\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix}

H 1 = I 2 u u T = [ 1 0 0 0 1 0 0 0 1 ] 1 6 6 [ 1 6 2 1 ] [ 1 6 2 1 ] = [ 1 6 2 6 1 6 2 6 6 2 6 6 2 6 6 1 6 2 6 6 6 5 6 6 ] H_1=I-2\bm{uu}^{\rm T}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}- \cfrac{1}{6-\sqrt{6}}\begin{bmatrix} 1-\sqrt{6} \\ 2 \\ 1 \end{bmatrix}\begin{bmatrix} 1-\sqrt{6} & 2 & 1 \end{bmatrix}= \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix}

H 1 A ( 0 ) = [ 1 6 2 6 1 6 2 6 6 2 6 6 2 6 6 1 6 2 6 6 6 5 6 6 ] [ 1 2 2 2 1 2 1 2 1 ] = [ 6 6 7 6 0 3 6 6 1 2 6 0 6 6 1 1 6 ] H_1A^{(0)}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}= \left[\begin{array}{c:cc} {\sqrt{6}} & {\sqrt{6}} & \cfrac{7}{\sqrt{6}} \\\hdashline 0 & \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ 0 & \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{array}\right]

  第2步,对 A ( 1 ) = [ 3 6 6 1 2 6 6 6 1 1 6 ] A^{(1)}=\left[\begin{array}{c:c} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{array}\right] 的第1列 b ( 2 ) = [ 3 6 6 1 6 6 1 ] \bm{b}^{(2)}=\begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} 构造Householder矩阵 H 2 H_2 ,使 H 2 b ( 2 ) = b ( 2 ) e 1 H_2\bm{b}^{(2)}=|\bm{b}^{(2)}|\bm{e}_1
b ( 2 ) b ( 2 ) e 1 = [ 3 6 6 1 6 6 1 ] 21 6 6 6 1 [ 1 0 ] = [ 3 6 21 6 6 6 1 6 6 1 ] = [ x 6 1 6 6 1 ] \bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1=\begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix}- \cfrac{\sqrt{21-6\sqrt{6}}}{\sqrt{6}-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} =\begin{bmatrix} \cfrac{3-\sqrt{6}-\sqrt{21-6\sqrt{6}}}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} =\begin{bmatrix} \cfrac{x}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix}

u = b ( 2 ) b ( 2 ) e 1 b ( 2 ) b ( 2 ) e 1 = 6 1 x 2 + 6 [ x 6 1 6 6 1 ] = [ x x 2 + 6 6 x 2 + 6 ] \bm{u}=\cfrac{\bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1}{|\bm{b}^{(2)}-|\bm{b}^{(2)}|\bm{e}_1|}= \cfrac{\sqrt{6}-1}{\sqrt{x^2+6}} \begin{bmatrix} \cfrac{x}{\sqrt{6}-1} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} \end{bmatrix} =\begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} \\ \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix}

H 2 = I 2 u u T = [ 1 0 0 1 ] 2 [ x x 2 + 6 6 x 2 + 6 ] [ x x 2 + 6 6 x 2 + 6 ] = [ 6 x 2 x 2 + 6 2 6 x x 2 + 6 2 6 x x 2 + 6 x 2 6 x 2 + 6 ] H_2=I-2\bm{uu}^{\text T}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}- 2\begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} \\ \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix} \begin{bmatrix} \cfrac{x}{\sqrt{x^2+6}} & \cfrac{\sqrt{6}}{\sqrt{x^2+6}} \end{bmatrix}= \begin{bmatrix} \cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] \cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}} \end{bmatrix}

H 2 A ( 1 ) = [ 6 x 2 x 2 + 6 2 6 x x 2 + 6 2 6 x x 2 + 6 x 2 6 x 2 + 6 ] [ 3 6 6 1 2 6 6 6 1 1 6 ] = [ 3 1 3 0 1 2 ] H_2A^{(1)}=\begin{bmatrix} \cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] \cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}} \end{bmatrix} \begin{bmatrix} \cfrac{3-\sqrt{6}}{\sqrt{6}-1} & \cfrac{2}{\sqrt{6}} \\ \cfrac{\sqrt{6}}{\sqrt{6}-1} & \cfrac{1}{\sqrt{6}} \end{bmatrix} =\begin{bmatrix} {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix}

  最后,令
S = [ 1 O T O H 2 ] H 1 = [ 1 0 0 0 6 x 2 x 2 + 6 2 6 x x 2 + 6 0 2 6 x x 2 + 6 x 2 6 x 2 + 6 ] [ 1 6 2 6 1 6 2 6 6 2 6 6 2 6 6 1 6 2 6 6 6 5 6 6 ] = [ 1 6 2 6 1 6 1 3 1 3 1 3 1 2 0 1 2 ] S=\begin{bmatrix}1&O^{\text T}\\[2ex]O&H_2\end{bmatrix}H_1 =\begin{bmatrix} 1&0&0\\[2ex]0&\cfrac{6-x^2}{{x^2+6}} & \cfrac{-2\sqrt{6}x}{{x^2+6}} \\[2ex] 0&\cfrac{-2\sqrt{6}x}{{x^2+6}} & \cfrac{x^2-6}{{x^2+6}}\end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{2}{\sqrt{6}} & \cfrac{\sqrt{6}-2}{\sqrt{6}-6} & \cfrac{2}{\sqrt{6}-6} \\ \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}-6} & \cfrac{\sqrt{6}-5}{\sqrt{6}-6} \end{bmatrix} =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} \\ \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{2}} & 0 & -\cfrac{1}{\sqrt{2}} \end{bmatrix}

Q = S T = = [ 1 6 1 3 1 2 2 6 1 3 0 1 6 1 3 1 2 ] , R = S A = [ 6 6 7 6 0 3 1 3 0 0 1 2 ] Q=S^{\rm T}= =\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}} & 0 \\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix},\quad R=SA=\begin{bmatrix} \sqrt{6} & \sqrt{6} & \cfrac{7}{\sqrt{6}} \\ 0 & {\sqrt{3}} & \cfrac{1}{\sqrt{3}} \\ 0 & 0 & \cfrac{1}{\sqrt{2}} \end{bmatrix}

则有 A = Q R A=QR 。(感兴趣的读者可用MATLAB验证结果,没想到一个小小的矩阵计算这么复杂(╯﹏╰))

四、矩阵的满秩分解

  设 A C r m × n ( r > 0 ) A\in C_r^{m\times n}(r>0) ,存在矩阵 F C r m × r F\in C_r^{m\times r} G C r r × n G\in C_r^{r\times n} ,使得
(7) A = F G \color{#F00}A=FG\tag{7}

其中 r r 为矩阵的秩, F F 是列满秩矩阵 G G 是行满秩矩阵,上式即为矩阵的满秩分解。当 A A 是满秩(列满秩或行满秩)矩阵时, A A 可分解为一个因子是单位矩阵,另一个因子是 A A 本身,称此满秩分解为平凡分解

五、矩阵的奇异值分解

  设 A C r m × n ( r > 0 ) A\in C_r^{m\times n}(r>0) ,则存在 m m 阶酉矩阵 U U n n 阶酉矩阵 V V ,使得
(8) A = U D V H = U [ Σ O O O ] V H \color{#F00}A=UDV^{\rm H}=U \begin{bmatrix} {\mathit\Sigma} & O \\ O & O \end{bmatrix} V^{\rm H}\tag{8}

其中, V H V^{\rm H} 代表酉矩阵 V V 共轭转置 Σ = d i a g ( σ 1 , σ 2 ,   , σ r ) \color{#F0F}{\mathit\Sigma}={\rm{diag}}(\sigma_1,\sigma_2,\cdots,\sigma_r) σ i ( i = 1 , 2 ,   , r ) \sigma_i(i=1,2,\cdots,r) 为矩阵 A A 的全部非零奇异值。上式即为矩阵的奇异值分解(Singular Value Decomposition,简称SVD分解),当 A A 为实对称矩阵时,也称正交对角分解

  矩阵的奇异值分解在最优化问题、特征值问题、最小二乘问题、广义逆矩阵问题及统计学等方面都有重要应用。下面通过一个具体实例,将矩阵 A = [ 1 0 0 1 1 1 ] A=\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} 进行SVD分解。

  • 首先计算 A T A = [ 1 0 1 0 1 1 ] [ 1 0 0 1 1 1 ] = [ 2 1 1 2 ] A^{\rm T}A=\begin{bmatrix}1&0&1\\0&1&1\end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}

  • 对矩阵 A T A A^{\rm T}A ,由 λ I A T A = λ 2 1 1 λ 2 = ( λ 1 ) ( λ 3 ) = 0 |\lambda I-A^{\rm T}A|=\begin{vmatrix} \lambda-2 & -1 \\ -1 & \lambda-2 \\ \end{vmatrix}=(\lambda-1)(\lambda-3)=0 ,得特征值 λ 1 = 1 ,   λ 2 = 3 \lambda_1=1,\,\lambda_2=3 ,对应的特征向量分别为:

ξ 1 = k 1 [ 1 1 ] , ξ 1 = k 2 [ 1 1 ] \bm \xi_1=k_1\begin{bmatrix} 1 \\ -1 \\ \end{bmatrix},\quad\bm \xi_1=k_2\begin{bmatrix} 1 \\ 1 \\ \end{bmatrix}

  • 于是有

Σ = d i a g ( λ 1 , λ 2 ) = [ 1 0 0 3 ] D = [ Σ O O O ] = [ 1 0 0 3 0 0 ] V = [ ξ 1 ξ 1 ξ 2 ξ 2 ] = [ 1 2 1 2 1 2 1 2 ] ,    这里 V 可以有四种解 \begin{array}{l} \mathit\Sigma={\rm diag}(\sqrt{\lambda_1},\sqrt{\lambda_2})= \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \end{bmatrix}\\ D=\begin{bmatrix} {\mathit\Sigma} & O \\ O & O \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\0 & 0\end{bmatrix}\\ V= \begin{bmatrix} \cfrac{\bm \xi_1}{\|\bm \xi_1\|} & \cfrac{\bm \xi_2}{\|\bm \xi_2\|} \end{bmatrix}= \begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{2}} \\ -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{2}} \end{bmatrix},\;\text{这里$V$可以有四种解} \end{array}

  • 计算

U 1 = A V Σ 1 = [ 1 0 0 1 1 1 ] [ 1 2 1 2 1 2 1 2 ] [ 1 0 0 1 3 ] = [ 1 2 1 6 1 2 1 6 0 2 6 ] U_1=AV{\mathit\Sigma}^{-1}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{2}} \\ -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \cfrac{1}{\sqrt{3}} \end{bmatrix}= \begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{6}} \\ -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{6}} \\ 0 & \cfrac{2}{\sqrt{6}} \end{bmatrix}

  • 构造一个列向量 U 2 = [ α 1 , α 2 , α 3 ] T U_2=[\alpha_1,\alpha_2,\alpha_3]^{\rm T} ,使得 U = [ U 1 U 2 ] = [ 1 2 1 6 α 1 1 2 1 6 α 2 0 2 6 α 3 ] U=\left[\begin{array}{c|c}U_1&U_2\end{array}\right]=\begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{6}} & \alpha_1 \\ -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{6}} & \alpha_2 \\ 0 & \cfrac{2}{\sqrt{6}} & \alpha_3\end{bmatrix} 为酉矩阵,即有:

[ 1 2 1 2 0 1 6 1 6 2 6 ] [ α 1 α 2 α 3 ] = 0 , α 1 2 + α 2 2 + α 3 2 = 1 \begin{bmatrix} \cfrac{1}{\sqrt{2}} & -\cfrac{1}{\sqrt{2}} & 0\\ \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{6}} & \cfrac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}={\bf 0},\quad且\sqrt{\alpha_1^2+\alpha_2^2+\alpha_3^2}=1

   U 2 = ± [ 1 3 1 3 1 3 ] \;U_2=\pm\begin{bmatrix} \cfrac{1}{\sqrt{3}} & \cfrac{1}{\sqrt{3}} & -\cfrac{1}{\sqrt{3}} \end{bmatrix}

U = [ 1 2 1 6 1 3 1 2 1 6 1 3 0 2 6 1 3 ] ,    这里 U 可以有两种解 U=\begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} \\ -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} \\ 0 & \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}}\end{bmatrix},\;\text{这里$U$可以有两种解}

  • 最后, A A 的SVD分解为:

A = U D V T = [ 1 2 1 6 1 3 1 2 1 6 1 3 0 2 6 1 3 ] [ 1 0 0 3 0 0 ] [ 1 2 1 2 1 2 1 2 ] T = [ 1 0 0 1 1 1 ] A=UDV^{\rm T}=\begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} \\ -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{3}} \\ 0 & \cfrac{2}{\sqrt{6}} & -\cfrac{1}{\sqrt{3}}\end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & \sqrt{3} \\0 & 0\end{bmatrix}\begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{2}} \\ -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{2}} \end{bmatrix}^{\rm T} =\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}

当调整奇异值的顺序,使 Σ = [ 3 0 0 1 ] \mathit\Sigma= \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{bmatrix} 时,可得
D = [ 3 0 0 1 0 0 ] V = [ 1 2 1 2 1 2 1 2 ] ,    这里 V 可以有四种解 U = [ 1 6 1 2 1 3 1 6 1 2 1 3 2 6 0 1 3 ] ,    这里 U 可以有两种解 \begin{array}{l} D=\begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\0 & 0\end{bmatrix}\\ V=\begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{1}{\sqrt{2}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix},\;\text{这里$V$可以有四种解}\\ U=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{6}} & -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{2}{\sqrt{6}} & 0 & -\cfrac{1}{\sqrt{3}}\end{bmatrix},\;\text{这里$U$可以有两种解} \end{array}

A = U D V T = [ 1 6 1 2 1 3 1 6 1 2 1 3 2 6 0 1 3 ] [ 3 0 0 1 0 0 ] [ 1 2 1 2 1 2 1 2 ] T = [ 1 0 0 1 1 1 ] A=UDV^{\rm T}=\begin{bmatrix} \cfrac{1}{\sqrt{6}} & \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{1}{\sqrt{6}} & -\cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{3}} \\ \cfrac{2}{\sqrt{6}} & 0 & -\cfrac{1}{\sqrt{3}}\end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\0 & 0\end{bmatrix} \begin{bmatrix} \cfrac{1}{\sqrt{2}} & \cfrac{1}{\sqrt{2}} \\ \cfrac{1}{\sqrt{2}} & -\cfrac{1}{\sqrt{2}} \end{bmatrix}^{\rm T} =\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}

可以看到,矩阵的奇异值分解通常不是唯一的。

猜你喜欢

转载自blog.csdn.net/lixujie666/article/details/85010089