初识kubernetes

Kubernetes 是谷歌开源的容器集群管理系统,是 Google 多年大规模容器管理技术 Borg 的开源版本,也是 CNCF 最重要的项目之一。

一、kubernetes出现背景

传统部署时代

早期应用部署在物理机上,没有办法隔离物理资源,就会导致资源分配问题。例如,多个应用运行在物理机上,可能其中某个资源占用大量资源,而其他应用则没法分配到足够的资源。要解决这个问题,只能每个应用单独跑在单台物理机上了。但是这样没法对资源进行伸缩,而且对于公司来说,维护大量物理机需要昂贵的成本。

虚拟化部署时代

对于传统部署中的问题,虚拟化是一个解决方案。他允许你在一个物理机上运行多个VM。虚拟化允许应用在VM之间进行隔离,并且应用在抢占资源方面也能够做到一定控制。

虚拟化允许更好地使用资源:对于应用可以更好的伸缩资源,减少硬件成本。每个虚拟机是一个完整的机器,包括他自己的操作系统。

容器化部署时代

容器和VM和相似,但是,他们已经将应用在不同操作系统之间进行了隔离。因此,容器可以看成是一个轻量级的VM,一个容器有他自己的文件系统、内容、处理空间等。此外,他和底层物理设施完全解耦,他们能够轻易的部署在云上。

容器变得越来越流行,因为他有好多优势。例如以下:

  • Agile application creation and deployment: increased ease and efficiency of container image creation compared to VM image use.
  • Continuous development, integration, and deployment: provides for reliable and frequent container image build and deployment with quick and easy rollbacks (due to image immutability).
  • Dev and Ops separation of concerns: create application container images at build/release time rather than deployment time, thereby decoupling applications from infrastructure.
  • Observability not only surfaces OS-level information and metrics, but also application health and other signals.
  • Environmental consistency across development, testing, and production: Runs the same on a laptop as it does in the cloud.
  • Cloud and OS distribution portability: Runs on Ubuntu, RHEL, CoreOS, on-prem, Google Kubernetes Engine, and anywhere else.
  • Application-centric management: Raises the level of abstraction from running an OS on virtual hardware to running an application on an OS using logical resources.
  • Loosely coupled, distributed, elastic, liberated micro-services: applications are broken into smaller, independent pieces and can be deployed and managed dynamically – not a monolithic stack running on one big single-purpose machine.
  • Resource isolation: predictable application performance.
  • Resource utilization: high efficiency and density.

二、kubernetes是什么?

kubernetes是一个容器编排平台。

Kubernetes 提供了很多的功能,它可以简化应用程序的工作流,加快开发速度。通常,一个成功的应用编排系统需要有较强的自动化能力,这也是为什么 Kubernetes 被设计作为构建组件和工具的生态系统平台,以便更轻松地部署、扩展和管理应用程序。

用户可以使用 Label 以自己的方式组织管理资源,还可以使用 Annotation 来自定义资源的描述信息,比如为管理工具提供状态检查等。

此外,Kubernetes 控制器也是构建在跟开发人员和用户使用的相同的 API 之上。用户还可以编写自己的控制器和调度器,也可以通过各种插件机制扩展系统的功能。

这种设计使得可以方便地在 Kubernetes 之上构建各种应用系统。

 

三、主要功能

1、自我修复
在节点故障时重新启动失败的容器,替换和重新部署, 保证预期的副本数量;杀死健康检查失败的容器,并且在未准备好之前不会处理客户端请求,确保线上服务不中断。
2、弹性伸缩
使用命令、 UI或者基于CPU使用情况自动快速扩容和缩容应用程序实例,保证应用业务高峰并发时的高可用性;业务低峰时回收资源, 以最小成本运行服务
3、自动部署和回滚
K8S采用滚动更新策略更新应用,一次更新一个Pod,而不是同时删除所有Pod,如果更新过程中出现问题,将回滚更改, 确保升级不受影响业务
4、服务发现和负载均衡
K8S为多个容器提供一个统一访问入口(内部IP地址和一个DNS名称),并且负载均衡关联的所有容器,使得用户无需考虑容器IP问题
5、机密和配置管理
管理机密数据和应用程序配置,而不需要把敏感数据暴露在镜像里,提高敏感数据安全性。并可以将一些常用的配置存储在K8S中,方便应用程序使用。
6、存储编排
挂载外部存储系统,无论是来自本地存储,公有云(如AWS),还是网络存储(如NFS、 GlusterFS、 Ceph)都作为集群资源的一部分使用,极大提高存储使用灵活性。
7、批处理
提供一次性任务和定时任务;满足批量数据处理和分析的场景。

四、核心组件

Kubernetes 主要由以下几个核心组件组成:

  • etcd 保存了整个集群的状态;
  • apiserver 提供了资源操作的唯一入口,并提供认证、授权、访问控制、API 注册和发现等机制;
  • controller manager 负责维护集群的状态,比如故障检测、自动扩展、滚动更新等;
  • scheduler 负责资源的调度,按照预定的调度策略将 Pod 调度到相应的机器上;
  • kubelet 负责维护容器的生命周期,同时也负责 Volume(CVI)和网络(CNI)的管理;
  • Container runtime 负责镜像管理以及 Pod 和容器的真正运行(CRI);
  • kube-proxy 负责为 Service 提供 cluster 内部的服务发现和负载均衡

猜你喜欢

转载自www.cnblogs.com/skyflask/p/11295914.html