Glide源码之旅

一、概述

好久没更新博客了今天更新一下,在图片加载库烂大街的今天,选择一个适合自己使用的图片加载库已经成为了每一个Android开发者的必经之路。现在市面上知名的图片加载库有UIL, Picasso, Volley ImageLoader, Fresco以及我们今天的主角Glide。它们各有千秋,不能评定谁一定比谁好,只能说哪一个更适合你。但就目前而言,用的最多的应该还是Glide,在使用一个框架之前,最好是能够了解一下它的原理,要做到知其然还要知其所以然,这样才不会被变化越来越快的时代所淘汰。

二、简单使用

Glide.with(this).load(url).into(imageView);

好基本这样写一张图片就加载出来了,好了,开始我们的源码之旅吧!先with(),再load(),最后into()。
这里写图片描述

三、with()

with()方法是Glide类中的一组静态方法,它有好几个方法重载,我们来看一下Glide类中所有with()方法的方法重载

public class Glide {

    ...

    public static RequestManager with(Context context) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(context);
    }

    public static RequestManager with(Activity activity) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(activity);
    }

    public static RequestManager with(FragmentActivity activity) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(activity);
    }

    @TargetApi(Build.VERSION_CODES.HONEYCOMB)
    public static RequestManager with(android.app.Fragment fragment) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(fragment);
    }

    public static RequestManager with(Fragment fragment) {
        RequestManagerRetriever retriever = RequestManagerRetriever.get();
        return retriever.get(fragment);
    }
}

这些是with的重载方法,可以传入Activity、Context、Fragment等,方法基本都是通过RequestManagerRetriever的静态方法get获取一个RequestManagerRetriever 对象,这个get就是一个单例,然后再通过RequestManagerRetriever的get方法获取RequestManager对象。
再看一下RequestManagerRetriever的get方法。

public class RequestManagerRetriever implements Handler.Callback {

    private static final RequestManagerRetriever INSTANCE = new RequestManagerRetriever();

    private volatile RequestManager applicationManager;

    ...

    /**
     * Retrieves and returns the RequestManagerRetriever singleton.
     */
    public static RequestManagerRetriever get() {
        return INSTANCE;
    }

    private RequestManager getApplicationManager(Context context) {
        // Either an application context or we're on a background thread.
        if (applicationManager == null) {
            synchronized (this) {
                if (applicationManager == null) {
                    applicationManager = new RequestManager(context.getApplicationContext(),
                            new ApplicationLifecycle(), new EmptyRequestManagerTreeNode());
                }
            }
        }
        return applicationManager;
    }

    public RequestManager get(Context context) {
        if (context == null) {
            throw new IllegalArgumentException("You cannot start a load on a null Context");
        } else if (Util.isOnMainThread() && !(context instanceof Application)) {
            if (context instanceof FragmentActivity) {
                return get((FragmentActivity) context);
            } else if (context instanceof Activity) {
                return get((Activity) context);
            } else if (context instanceof ContextWrapper) {
                return get(((ContextWrapper) context).getBaseContext());
            }
        }
        return getApplicationManager(context);
    }

    public RequestManager get(FragmentActivity activity) {
        if (Util.isOnBackgroundThread()) {
            return get(activity.getApplicationContext());
        } else {
            assertNotDestroyed(activity);
            FragmentManager fm = activity.getSupportFragmentManager();
            return supportFragmentGet(activity, fm);
        }
    }

    public RequestManager get(Fragment fragment) {
        if (fragment.getActivity() == null) {
            throw new IllegalArgumentException("You cannot start a load on a fragment before it is attached");
        }
        if (Util.isOnBackgroundThread()) {
            return get(fragment.getActivity().getApplicationContext());
        } else {
            FragmentManager fm = fragment.getChildFragmentManager();
            return supportFragmentGet(fragment.getActivity(), fm);
        }
    }

    @TargetApi(Build.VERSION_CODES.HONEYCOMB)
    public RequestManager get(Activity activity) {
        if (Util.isOnBackgroundThread() || Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB) {
            return get(activity.getApplicationContext());
        } else {
            assertNotDestroyed(activity);
            android.app.FragmentManager fm = activity.getFragmentManager();
            return fragmentGet(activity, fm);
        }
    }

    @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
    private static void assertNotDestroyed(Activity activity) {
        if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1 && activity.isDestroyed()) {
            throw new IllegalArgumentException("You cannot start a load for a destroyed activity");
        }
    }

    @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
    public RequestManager get(android.app.Fragment fragment) {
        if (fragment.getActivity() == null) {
            throw new IllegalArgumentException("You cannot start a load on a fragment before it is attached");
        }
        if (Util.isOnBackgroundThread() || Build.VERSION.SDK_INT < Build.VERSION_CODES.JELLY_BEAN_MR1) {
            return get(fragment.getActivity().getApplicationContext());
        } else {
            android.app.FragmentManager fm = fragment.getChildFragmentManager();
            return fragmentGet(fragment.getActivity(), fm);
        }
    }

    @TargetApi(Build.VERSION_CODES.JELLY_BEAN_MR1)
    RequestManagerFragment getRequestManagerFragment(final android.app.FragmentManager fm) {
        RequestManagerFragment current = (RequestManagerFragment) fm.findFragmentByTag(FRAGMENT_TAG);
        if (current == null) {
            current = pendingRequestManagerFragments.get(fm);
            if (current == null) {
                current = new RequestManagerFragment();
                pendingRequestManagerFragments.put(fm, current);
                fm.beginTransaction().add(current, FRAGMENT_TAG).commitAllowingStateLoss();
                handler.obtainMessage(ID_REMOVE_FRAGMENT_MANAGER, fm).sendToTarget();
            }
        }
        return current;
    }

    @TargetApi(Build.VERSION_CODES.HONEYCOMB)
    RequestManager fragmentGet(Context context, android.app.FragmentManager fm) {
        RequestManagerFragment current = getRequestManagerFragment(fm);
        RequestManager requestManager = current.getRequestManager();
        if (requestManager == null) {
            requestManager = new RequestManager(context, current.getLifecycle(), current.getRequestManagerTreeNode());
            current.setRequestManager(requestManager);
        }
        return requestManager;
    }

    SupportRequestManagerFragment getSupportRequestManagerFragment(final FragmentManager fm) {
        SupportRequestManagerFragment current = (SupportRequestManagerFragment) fm.findFragmentByTag(FRAGMENT_TAG);
        if (current == null) {
            current = pendingSupportRequestManagerFragments.get(fm);
            if (current == null) {
                current = new SupportRequestManagerFragment();
                pendingSupportRequestManagerFragments.put(fm, current);
                fm.beginTransaction().add(current, FRAGMENT_TAG).commitAllowingStateLoss();
                handler.obtainMessage(ID_REMOVE_SUPPORT_FRAGMENT_MANAGER, fm).sendToTarget();
            }
        }
        return current;
    }

    RequestManager supportFragmentGet(Context context, FragmentManager fm) {
        SupportRequestManagerFragment current = getSupportRequestManagerFragment(fm);
        RequestManager requestManager = current.getRequestManager();
        if (requestManager == null) {
            requestManager = new RequestManager(context, current.getLifecycle(), current.getRequestManagerTreeNode());
            current.setRequestManager(requestManager);
        }
        return requestManager;
    }

    ...
}

来,别看代码量稍微多一点,但是还是很简单的,从29行的get方法中可以看出,RequestManagerRetriever虽然有很多的get重载方法,可接收activity,fragment,context等,但是实际上只是分为2类一类是传入了Application类型的参数,一类是传入非Application类型的参数。如果传入的是Application类型的参数的话,那么会执行41行
return getApplicationManager(context);
生成一个RequestManager对象返回。其实这是最简单的一种情况,因为Application对象的生命周期即应用程序的生命周期,因此Glide并不需要做什么特殊的处理,它自动就是和应用程序的生命周期是同步的,如果应用程序关闭的话,Glide的加载也会同时终止。
然后再来分析如果传入的非Application参数的情况,无论你传入的是Activity,Fragment还是FragmentActivity,最终的流程都是一样的,都会往当前的activity传入一个隐藏的Fragment,然后再生成requestManager。

 SupportRequestManagerFragment current = getSupportRequestManagerFragment(fm);

或者

 RequestManagerFragment current = getRequestManagerFragment(fm);

逻辑在117和141行。
至于为什么添加这个隐藏的fragment呢,很简单,因为你的Glide需要知道加载的生命周期,你看啊,比如你的Glide正在批量请求网络加载图片,可是你的activity已经关闭了,那么就不在需要继续请求网络了,可是Glide并不知道Activity的生命周期。所以需要添加一个隐藏的fragment,Fragment和Activity是同步的,这样Activity如果销毁了,Fragment就会监听到,这样Glide就可以停止加载图片了,这是它的一个小技巧。

对了还有在第45行,如果当前加载图片在非UI线程,那么都统一当成Application去处理

 if (Util.isOnBackgroundThread()) {
        return get(activity.getApplicationContext());
  } else {
        ...
  }

这里写图片描述
好了with就到这吧,继续分析load(),看看它都做了什么。

四、load()

with返回了requestManager,那么我们就在requestManager类中查看load方法,本文以load(String uri)加载图片网址进行分析。

public class RequestManager implements LifecycleListener {

    ...

    /**
     * Returns a request builder to load the given {@link String}.
     * signature.
     *
     * @see #fromString()
     * @see #load(Object)
     *
     * @param string A file path, or a uri or url handled by {@link com.bumptech.glide.load.model.UriLoader}.
     */
    public DrawableTypeRequest<String> load(String string) {
        return (DrawableTypeRequest<String>) fromString().load(string);
    }

    public DrawableTypeRequest<String> fromString() {
        return loadGeneric(String.class);
    }

    private <T> DrawableTypeRequest<T> loadGeneric(Class<T> modelClass) {
        ModelLoader<T, InputStream> streamModelLoader = Glide.buildStreamModelLoader(modelClass, context);
        ModelLoader<T, ParcelFileDescriptor> fileDescriptorModelLoader =Glide.buildFileDescriptorModelLoader(modelClass, context);
        if (modelClass != null && streamModelLoader == null && fileDescriptorModelLoader == null) {
            throw new IllegalArgumentException("Unknown type " + modelClass + ". You must provide a Model of a type for"
                    + " which there is a registered ModelLoader, if you are using a custom model, you must first call"
                    + " Glide#register with a ModelLoaderFactory for your custom model class");
        }
        return optionsApplier.apply(
                new DrawableTypeRequest<T>(modelClass, streamModelLoader, fileDescriptorModelLoader, context,
                        glide, requestTracker, lifecycle, optionsApplier));
    }

    ...

}

这个是简化了的requestManager。开始分析首先是从load方法看,它比较简单只调用了 fromString()然后再调用了load(string)方法,并把图片地址传入,fromString()里面也只调用了loadGeneric()方法。在loadGeneric方法中调用了buildFileDescriptorModelLoader()和buildFileDescriptorModelLoader();来获取ModelLoader。这个对象是用于加载图片的。
然后又去new了一个DrawableTypeRequest对象,然后把刚才获得的ModelLoader对象,还有一大堆杂七杂八的东西都传了进去。具体每个参数的含义和作用就不解释了,我们只看主线流程。

再来分析一下DrawableTypeRequest吧,

public class DrawableTypeRequest<ModelType> extends DrawableRequestBuilder<ModelType> implements DownloadOptions {
    private final ModelLoader<ModelType, InputStream> streamModelLoader;
    private final ModelLoader<ModelType, ParcelFileDescriptor> fileDescriptorModelLoader;
    private final RequestManager.OptionsApplier optionsApplier;

    ...

    DrawableTypeRequest(Class<ModelType> modelClass, ModelLoader<ModelType, InputStream> streamModelLoader,
            ModelLoader<ModelType, ParcelFileDescriptor> fileDescriptorModelLoader, Context context, Glide glide,
            RequestTracker requestTracker, Lifecycle lifecycle, RequestManager.OptionsApplier optionsApplier) {
        super(context, modelClass,
                buildProvider(glide, streamModelLoader, fileDescriptorModelLoader, GifBitmapWrapper.class,
                        GlideDrawable.class, null),
                glide, requestTracker, lifecycle);
        this.streamModelLoader = streamModelLoader;
        this.fileDescriptorModelLoader = fileDescriptorModelLoader;
        this.optionsApplier = optionsApplier;
    }

    /**
     * Attempts to always load the resource as a {@link android.graphics.Bitmap}, even if it could actually be animated.
     *
     * @return A new request builder for loading a {@link android.graphics.Bitmap}
     */
    public BitmapTypeRequest<ModelType> asBitmap() {
        return optionsApplier.apply(new BitmapTypeRequest<ModelType>(this, streamModelLoader,
                fileDescriptorModelLoader, optionsApplier));
    }

    /**
     * Attempts to always load the resource as a {@link com.bumptech.glide.load.resource.gif.GifDrawable}.
     * <p>
     *     If the underlying data is not a GIF, this will fail. As a result, this should only be used if the model
     *     represents an animated GIF and the caller wants to interact with the GIfDrawable directly. Normally using
     *     just an {@link DrawableTypeRequest} is sufficient because it will determine whether or
     *     not the given data represents an animated GIF and return the appropriate animated or not animated
     *     {@link android.graphics.drawable.Drawable} automatically.
     * </p>
     *
     * @return A new request builder for loading a {@link com.bumptech.glide.load.resource.gif.GifDrawable}.
     */
    public GifTypeRequest<ModelType> asGif() {
        return optionsApplier.apply(new GifTypeRequest<ModelType>(this, streamModelLoader, optionsApplier));
    }

    ...
}

可以看到,最主要的就是它提供了asBitmap()和asGif()这两个方法。分别是用于强制指定加载静态图片和动态图片。而从源码中可以看出,如果调用它们则分别又创建了一个BitmapTypeRequest和GifTypeRequest,如果没有进行强制指定的话,那默认就是使用DrawableTypeRequest。

RequestManager的load()方法中。刚才已经分析过了,fromString()方法会返回一个DrawableTypeRequest对象,接下来会调用这个对象的load()方法,把图片的URL地址传进去。但是我们刚才看到了,DrawableTypeRequest中并没有load()方法,那么很容易就能猜想到,load()方法是在父类当中的,这个方法简单来说就是存储刚才的请求地址。
但是最后都会返回一个DrawableTypeRequest (继承了DrawableRequestBuilder)
DrawableRequestBuilder就是支持链式调用的一个类,我们平时有类似的需求的时候也可以模仿这样的处理方式,把一些非必须参数用链式调用的方式来设置

五、into()

//GenericRequestBuilder.java    

public Target<TranscodeType> into(ImageView view) {
        Util.assertMainThread();
        if (view == null) {
            throw new IllegalArgumentException("You must pass in a non null View");
        }
        if (!isTransformationSet && view.getScaleType() != null) {
            switch (view.getScaleType()) {
                case CENTER_CROP:
                    applyCenterCrop();
                    break;
                case FIT_CENTER:
                case FIT_START:
                case FIT_END:
                    applyFitCenter();
                    break;
                //$CASES-OMITTED$
                default:
                    // Do nothing.
            }
        }
        return into(glide.buildImageViewTarget(view, transcodeClass));
    }

看到这里基本上已经算核心了,慢慢分析。
1.首先是 Util.assertMainThread(),它的作用就是检查当前运行的是否是在主线程上,如果不是就抛出异常。
2.如果没调用transform,并且你的imageview设置了ScaleType,那么它会根据你的设置设置图片。
3.imageview被封装成了Target。

先看最后一行into方法,一步一步来,首先是
(1)调用了glide.buildImageViewTarget()方法,这个方法会构建出一个Target对象,Target对象则是用来最终展示图片用的

<R> Target<R> buildImageViewTarget(ImageView imageView, Class<R> transcodedClass) {
    return imageViewTargetFactory.buildTarget(imageView, transcodedClass);
}

里其实又是调用了ImageViewTargetFactory的buildTarget()方法。

public class ImageViewTargetFactory {

    @SuppressWarnings("unchecked")
    public <Z> Target<Z> buildTarget(ImageView view, Class<Z> clazz) {
        if (GlideDrawable.class.isAssignableFrom(clazz)) {
            return (Target<Z>) new GlideDrawableImageViewTarget(view);
        } else if (Bitmap.class.equals(clazz)) {
            return (Target<Z>) new BitmapImageViewTarget(view);
        } else if (Drawable.class.isAssignableFrom(clazz)) {
            return (Target<Z>) new DrawableImageViewTarget(view);
        } else {
            throw new IllegalArgumentException("Unhandled class: " + clazz
                    + ", try .as*(Class).transcode(ResourceTranscoder)");
        }
    }
}

可以看到,在buildTarget()方法中会根据传入的class参数来构建不同的Target对象。那如果你要分析这个class参数是从哪儿传过来的,这可有得你分析了,简单起见我直接帮大家梳理清楚。这个class参数其实基本上只有两种情况,如果你在使用Glide加载图片的时候调用了asBitmap()方法,那么这里就会构建出BitmapImageViewTarget对象,否则的话构建的都是GlideDrawableImageViewTarget对象。至于上述代码中的DrawableImageViewTarget对象,这个通常都是用不到的,我们可以暂时不用管它。

好了,第(1)步分析完了,我们主要做的就是通过glide.buildImageViewTarget()方法,构建出了一个GlideDrawableImageViewTarget对象。它主要就是用来最终展示图片。

(2)接下来我们再分析外层的into方法,

/GenericRequestBuilder.java        

public <Y extends Target<TranscodeType>> Y into(Y target) {
    Util.assertMainThread();
    if (target == null) {
        throw new IllegalArgumentException("You must pass in a non null Target");
    }
    if (!isModelSet) {
        throw new IllegalArgumentException("You must first set a model (try #load())");
    }
    Request previous = target.getRequest();
    if (previous != null) {
        previous.clear();
        requestTracker.removeRequest(previous);
        previous.recycle();
    }
    Request request = buildRequest(target);
    target.setRequest(request);
    lifecycle.addListener(target);
    requestTracker.runRequest(request);
    return target;
}

这里可以看到控件封装成的Target能够获取自身绑定的请求,当发现之前的请求还在的时候,会把旧的请求清除掉,绑定新的请求,这也就是为什么控件复用时不会出现图片错位的问题。
接着它调用了buildRequest(target)来创建一个请求。

//GenericRequestBuilder.java    
private Request buildRequest(Target<TranscodeType> target) {
        if (priority == null) {
            priority = Priority.NORMAL;
        }
        return buildRequestRecursive(target, null);
}
//GenericRequestBuilder.java

private Request buildRequestRecursive(Target<TranscodeType> target, ThumbnailRequestCoordinator parentCoordinator) {
        if (thumbnailRequestBuilder != null) {
           ...
            Request fullRequest = obtainRequest(target, sizeMultiplier, priority, coordinator);
           ...
            Request thumbRequest = thumbnailRequestBuilder.buildRequestRecursive(target, coordinator);
           ...
            coordinator.setRequests(fullRequest, thumbRequest);
            return coordinator;
        } else if (thumbSizeMultiplier != null) {           
            ThumbnailRequestCoordinator coordinator = new ThumbnailRequestCoordinator(parentCoordinator);
            Request fullRequest = obtainRequest(target, sizeMultiplier, priority, coordinator);
            Request thumbnailRequest = obtainRequest(target, thumbSizeMultiplier, getThumbnailPriority(), coordinator);
            coordinator.setRequests(fullRequest, thumbnailRequest);
            return coordinator;
        } else {
            // Base case: no thumbnail.
            return obtainRequest(target, sizeMultiplier, priority, parentCoordinator);
        }
    }

其实其中大部分的代码都是在处理缩略图的。如果我们只追主线流程的话,那么只需要看最后一行代码就可以了。这里调用了obtainRequest()方法来获取一个Request对象,而obtainRequest()方法中又去调用了GenericRequest的obtain()方法。注意这个obtain()方法需要传入非常多的参数,而其中很多的参数我们都是比较熟悉的,像什么placeholderId、errorPlaceholder、diskCacheStrategy等等。因此,我们就有理由猜测,刚才在load()方法中调用的所有API,其实都是在这里组装到Request对象当中的。那么我们进入到这个GenericRequest的obtain()方法看一下。

public final class GenericRequest<A, T, Z, R> implements Request, SizeReadyCallback,
        ResourceCallback {
    ...

    public static <A, T, Z, R> GenericRequest<A, T, Z, R> obtain(
            LoadProvider<A, T, Z, R> loadProvider,
            A model,
            Key signature,
            Context context,
            Priority priority,
            Target<R> target,
            float sizeMultiplier,
            Drawable placeholderDrawable,
            int placeholderResourceId,
            Drawable errorDrawable,
            int errorResourceId,
            Drawable fallbackDrawable,
            int fallbackResourceId,
            RequestListener<? super A, R> requestListener,
            RequestCoordinator requestCoordinator,
            Engine engine,
            Transformation<Z> transformation,
            Class<R> transcodeClass,
            boolean isMemoryCacheable,
            GlideAnimationFactory<R> animationFactory,
            int overrideWidth,
            int overrideHeight,
            DiskCacheStrategy diskCacheStrategy) {
        @SuppressWarnings("unchecked")
        GenericRequest<A, T, Z, R> request = (GenericRequest<A, T, Z, R>) REQUEST_POOL.poll();
        if (request == null) {
            request = new GenericRequest<A, T, Z, R>();
        }
        request.init(loadProvider,
                model,
                signature,
                context,
                priority,
                target,
                sizeMultiplier,
                placeholderDrawable,
                placeholderResourceId,
                errorDrawable,
                errorResourceId,
                fallbackDrawable,
                fallbackResourceId,
                requestListener,
                requestCoordinator,
                engine,
                transformation,
                transcodeClass,
                isMemoryCacheable,
                animationFactory,
                overrideWidth,
                overrideHeight,
                diskCacheStrategy);
        return request;
    }

    ...
}

可以看到,这里在第33行去new了一个GenericRequest对象,并在最后一行返回,也就是说,obtain()方法实际上获得的就是一个GenericRequest对象。另外这里又在第35行调用了GenericRequest的init(),里面主要就是一些赋值的代码,将传入的这些参数赋值到GenericRequest的成员变量当中,我们就不再跟进去看了。

简单来说第二步主要就是在GenericRequestBuilder调用buildRequest(target)方法生成Request对象。然后requestTracker.runRequest(request); 执行它。
其实逻辑还有很多,但是我们本着不求甚解的心态大体的走了一圈。下面主要是分析一下他的缓存逻辑。

六、Glide缓存简介

Glide的缓存设计可以说是非常先进的,考虑的场景也很周全。在缓存这一功能上,Glide又将它分成了两个模块,一个是内存缓存,一个是硬盘缓存。

这两个缓存模块的作用各不相同,内存缓存的主要作用是防止应用重复将图片数据读取到内存当中,而硬盘缓存的主要作用是防止应用重复从网络或其他地方重复下载和读取数据。
接下来我们看一下它是怎么做的。

七、缓存Key

使用缓存就必须得先有Key,生成缓存Key的代码在Engine类的load()方法当中,这部分代码我们看下:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    public <T, Z, R> LoadStatus load(Key signature, int width, int height, DataFetcher<T> fetcher,
            DataLoadProvider<T, Z> loadProvider, Transformation<Z> transformation, ResourceTranscoder<Z, R> transcoder,
            Priority priority, boolean isMemoryCacheable, DiskCacheStrategy diskCacheStrategy, ResourceCallback cb) {
        Util.assertMainThread();
        long startTime = LogTime.getLogTime();

        final String id = fetcher.getId();
        EngineKey key = keyFactory.buildKey(id, signature, width, height, loadProvider.getCacheDecoder(),
                loadProvider.getSourceDecoder(), transformation, loadProvider.getEncoder(),
                transcoder, loadProvider.getSourceEncoder());

        ...
    }

    ...
}

可以看到,这里在第11行调用了fetcher.getId()方法获得了一个id字符串,这个字符串也就是我们要加载的图片的唯一标识,比如说如果是一张网络上的图片的话,那么这个id就是这张图片的url地址。

接下来在第12行,将这个id连同着signature、width、height等等10个参数一起传入到EngineKeyFactory的buildKey()方法当中,从而构建出了一个EngineKey对象,这个EngineKey也就是Glide中的缓存Key了。

可见,决定缓存Key的条件非常多,即使你用override()方法改变了一下图片的width或者height,也会生成一个完全不同的缓存Key。

EngineKey类的源码大家有兴趣可以自己去看一下,其实主要就是重写了equals()和hashCode()方法,保证只有传入EngineKey的所有参数都相同的情况下才认为是同一个EngineKey对象,我就不在这里将源码贴出来了。

八、内存缓存

有了缓存Key,接下来就可以开始进行缓存了,那么我们先从内存缓存看起。

首先你要知道,默认情况下,Glide自动就是开启内存缓存的。也就是说,当我们使用Glide加载了一张图片之后,这张图片就会被缓存到内存当中,只要在它还没从内存中被清除之前,下次使用Glide再加载这张图片都会直接从内存当中读取,而不用重新从网络或硬盘上读取了,这样无疑就可以大幅度提升图片的加载效率。比方说你在一个RecyclerView当中反复上下滑动,RecyclerView中只要是Glide加载过的图片都可以直接从内存当中迅速读取并展示出来,从而大大提升了用户体验。

而Glide最为人性化的是,你甚至不需要编写任何额外的代码就能自动享受到这个极为便利的内存缓存功能,因为Glide默认就已经将它开启了。

那么既然已经默认开启了这个功能,还有什么可讲的用法呢?只有一点,如果你有什么特殊的原因需要禁用内存缓存功能,Glide对此提供了接口:

Glide.with(this)
     .load(url)
     .skipMemoryCache(true)
     .into(imageView);

可以看到,只需要调用skipMemoryCache()方法并传入true,就表示禁用掉Glide的内存缓存功能。
首先看一下,在之前的load()方法中,我们当时分析到了在loadGeneric()方法中会调用Glide.buildStreamModelLoader()方法来获取一个ModelLoader对象。我们现在来看下它的源码:

public class Glide {

    public static <T, Y> ModelLoader<T, Y> buildModelLoader(Class<T> modelClass, Class<Y> resourceClass,
            Context context) {
         if (modelClass == null) {
            if (Log.isLoggable(TAG, Log.DEBUG)) {
                Log.d(TAG, "Unable to load null model, setting placeholder only");
            }
            return null;
        }
        return Glide.get(context).getLoaderFactory().buildModelLoader(modelClass, resourceClass);
    }

    public static Glide get(Context context) {
        if (glide == null) {
            synchronized (Glide.class) {
                if (glide == null) {
                    Context applicationContext = context.getApplicationContext();
                    List<GlideModule> modules = new ManifestParser(applicationContext).parse();
                    GlideBuilder builder = new GlideBuilder(applicationContext);
                    for (GlideModule module : modules) {
                        module.applyOptions(applicationContext, builder);
                    }
                    glide = builder.createGlide();
                    for (GlideModule module : modules) {
                        module.registerComponents(applicationContext, glide);
                    }
                }
            }
        }
        return glide;
    }

    ...
}

在第11行去构建ModelLoader对象的时候,先调用了一个Glide.get()方法,而这个方法就是关键。我们可以看到,get()方法中实现的是一个单例功能,而创建Glide对象则是在第24行调用GlideBuilder的createGlide()方法来创建的,那么我们跟到这个方法当中:

public class GlideBuilder {
    ...

    Glide createGlide() {
        if (sourceService == null) {
            final int cores = Math.max(1, Runtime.getRuntime().availableProcessors());
            sourceService = new FifoPriorityThreadPoolExecutor(cores);
        }
        if (diskCacheService == null) {
            diskCacheService = new FifoPriorityThreadPoolExecutor(1);
        }
        MemorySizeCalculator calculator = new MemorySizeCalculator(context);
        if (bitmapPool == null) {
            if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
                int size = calculator.getBitmapPoolSize();
                bitmapPool = new LruBitmapPool(size);
            } else {
                bitmapPool = new BitmapPoolAdapter();
            }
        }
        if (memoryCache == null) {
            memoryCache = new LruResourceCache(calculator.getMemoryCacheSize());
        }
        if (diskCacheFactory == null) {
            diskCacheFactory = new InternalCacheDiskCacheFactory(context);
        }
        if (engine == null) {
            engine = new Engine(memoryCache, diskCacheFactory, diskCacheService, sourceService);
        }
        if (decodeFormat == null) {
            decodeFormat = DecodeFormat.DEFAULT;
        }
        return new Glide(engine, memoryCache, bitmapPool, context, decodeFormat);
    }
}

这里也就是构建Glide对象的地方了。那么观察第22行,你会发现这里new出了一个LruResourceCache,并把它赋值到了memoryCache这个对象上面。你没有猜错,这个就是Glide实现内存缓存所使用的LruCache对象了。

现在创建好了LruResourceCache对象只能说是把准备工作做好了,接下来我们就来看看Glide中的内存缓存到底是如何实现的。

刚才在Engine的load()方法中我们已经看到了生成缓存Key的代码,而内存缓存的代码其实也是在这里实现的,那么我们重新来看一下Engine类load()方法的完整源码:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {
    ...    

    public <T, Z, R> LoadStatus load(Key signature, int width, int height, DataFetcher<T> fetcher,
            DataLoadProvider<T, Z> loadProvider, Transformation<Z> transformation, ResourceTranscoder<Z, R> transcoder,
            Priority priority, boolean isMemoryCacheable, DiskCacheStrategy diskCacheStrategy, ResourceCallback cb) {
        Util.assertMainThread();
        long startTime = LogTime.getLogTime();

        final String id = fetcher.getId();
        EngineKey key = keyFactory.buildKey(id, signature, width, height, loadProvider.getCacheDecoder(),
                loadProvider.getSourceDecoder(), transformation, loadProvider.getEncoder(),
                transcoder, loadProvider.getSourceEncoder());

        EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
        if (cached != null) {
            cb.onResourceReady(cached);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Loaded resource from cache", startTime, key);
            }
            return null;
        }

        EngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable);
        if (active != null) {
            cb.onResourceReady(active);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Loaded resource from active resources", startTime, key);
            }
            return null;
        }

        EngineJob current = jobs.get(key);
        if (current != null) {
            current.addCallback(cb);
            if (Log.isLoggable(TAG, Log.VERBOSE)) {
                logWithTimeAndKey("Added to existing load", startTime, key);
            }
            return new LoadStatus(cb, current);
        }

        EngineJob engineJob = engineJobFactory.build(key, isMemoryCacheable);
        DecodeJob<T, Z, R> decodeJob = new DecodeJob<T, Z, R>(key, width, height, fetcher, loadProvider, transformation,
                transcoder, diskCacheProvider, diskCacheStrategy, priority);
        EngineRunnable runnable = new EngineRunnable(engineJob, decodeJob, priority);
        jobs.put(key, engineJob);
        engineJob.addCallback(cb);
        engineJob.start(runnable);

        if (Log.isLoggable(TAG, Log.VERBOSE)) {
            logWithTimeAndKey("Started new load", startTime, key);
        }
        return new LoadStatus(cb, engineJob);
    }

    ...
}

可以看到,这里在第17行调用了loadFromCache()方法来获取缓存图片,如果获取到就直接调用cb.onResourceReady()方法进行回调。如果没有获取到,则会在第26行调用loadFromActiveResources()方法来获取缓存图片,获取到的话也直接进行回调。只有在两个方法都没有获取到缓存的情况下,才会继续向下执行,从而开启线程来加载图片。

也就是说,Glide的图片加载过程中会调用两个方法来获取内存缓存,loadFromCache()和loadFromActiveResources()。这两个方法中一个使用的就是LruCache算法,另一个使用的就是弱引用。我们来看一下它们的源码:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    private final MemoryCache cache;
    private final Map<Key, WeakReference<EngineResource<?>>> activeResources;
    ...

    private EngineResource<?> loadFromCache(Key key, boolean isMemoryCacheable) {
        if (!isMemoryCacheable) {
            return null;
        }
        EngineResource<?> cached = getEngineResourceFromCache(key);
        if (cached != null) {
            cached.acquire();
            activeResources.put(key, new ResourceWeakReference(key, cached, getReferenceQueue()));
        }
        return cached;
    }

    private EngineResource<?> getEngineResourceFromCache(Key key) {
        Resource<?> cached = cache.remove(key);
        final EngineResource result;
        if (cached == null) {
            result = null;
        } else if (cached instanceof EngineResource) {
            result = (EngineResource) cached;
        } else {
            result = new EngineResource(cached, true /*isCacheable*/);
        }
        return result;
    }

    private EngineResource<?> loadFromActiveResources(Key key, boolean isMemoryCacheable) {
        if (!isMemoryCacheable) {
            return null;
        }
        EngineResource<?> active = null;
        WeakReference<EngineResource<?>> activeRef = activeResources.get(key);
        if (activeRef != null) {
            active = activeRef.get();
            if (active != null) {
                active.acquire();
            } else {
                activeResources.remove(key);
            }
        }
        return active;
    }

    ...
}

在loadFromCache()方法的一开始,首先就判断了isMemoryCacheable是不是false,如果是false的话就直接返回null。这是什么意思呢?其实很简单,我们刚刚不是学了一个skipMemoryCache()方法吗?如果在这个方法中传入true,那么这里的isMemoryCacheable就会是false,表示内存缓存已被禁用。

我们继续住下看,接着调用了getEngineResourceFromCache()方法来获取缓存。在这个方法中,会使用缓存Key来从cache当中取值,而这里的cache对象就是在构建Glide对象时创建的LruResourceCache,那么说明这里其实使用的就是LruCache算法了。

但是呢,观察第22行,当我们从LruResourceCache中获取到缓存图片之后会将它从缓存中移除,然后在第16行将这个缓存图片存储到activeResources当中。activeResources就是一个弱引用的HashMap,用来缓存正在使用中的图片,我们可以看到,loadFromActiveResources()方法就是从activeResources这个HashMap当中取值的。使用activeResources来缓存正在使用中的图片,可以保护这些图片不会被LruCache算法回收掉。

好的,从内存缓存中读取数据的逻辑大概就是这些了。概括一下来说,就是如果能从内存缓存当中读取到要加载的图片,那么就直接进行回调,如果读取不到的话,才会开启线程执行后面的图片加载逻辑。

现在我们已经搞明白了内存缓存读取的原理,接下来的问题就是内存缓存是在哪里写入的呢?当图片加载完成之后,会在EngineJob当中通过Handler发送一条消息将执行逻辑切回到主线程当中,从而执行handleResultOnMainThread()方法。那么我们现在重新来看一下这个方法,代码如下所示:

class EngineJob implements EngineRunnable.EngineRunnableManager {

    private final EngineResourceFactory engineResourceFactory;
    ...

    private void handleResultOnMainThread() {
        if (isCancelled) {
            resource.recycle();
            return;
        } else if (cbs.isEmpty()) {
            throw new IllegalStateException("Received a resource without any callbacks to notify");
        }
        engineResource = engineResourceFactory.build(resource, isCacheable);
        hasResource = true;
        engineResource.acquire();
        listener.onEngineJobComplete(key, engineResource);
        for (ResourceCallback cb : cbs) {
            if (!isInIgnoredCallbacks(cb)) {
                engineResource.acquire();
                cb.onResourceReady(engineResource);
            }
        }
        engineResource.release();
    }

    static class EngineResourceFactory {
        public <R> EngineResource<R> build(Resource<R> resource, boolean isMemoryCacheable) {
            return new EngineResource<R>(resource, isMemoryCacheable);
        }
    }
    ...
}

在第13行,这里通过EngineResourceFactory构建出了一个包含图片资源的EngineResource对象,然后会在第16行将这个对象回调到Engine的onEngineJobComplete()方法当中:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {
    ...    

    @Override
    public void onEngineJobComplete(Key key, EngineResource<?> resource) {
        Util.assertMainThread();
        // A null resource indicates that the load failed, usually due to an exception.
        if (resource != null) {
            resource.setResourceListener(key, this);
            if (resource.isCacheable()) {
                activeResources.put(key, new ResourceWeakReference(key, resource, getReferenceQueue()));
            }
        }
        jobs.remove(key);
    }

    ...
}

现在就非常明显了,可以看到,在第13行,回调过来的EngineResource被put到了activeResources当中,也就是在这里写入的缓存。

那么这只是弱引用缓存,还有另外一种LruCache缓存是在哪里写入的呢?这就要介绍一下EngineResource中的一个引用机制了。观察刚才的handleResultOnMainThread()方法,在第15行和第19行有调用EngineResource的acquire()方法,在第23行有调用它的release()方法。其实,EngineResource是用一个acquired变量用来记录图片被引用的次数,调用acquire()方法会让变量加1,调用release()方法会让变量减1,代码如下所示:

class EngineResource<Z> implements Resource<Z> {

    private int acquired;
    ...

    void acquire() {
        if (isRecycled) {
            throw new IllegalStateException("Cannot acquire a recycled resource");
        }
        if (!Looper.getMainLooper().equals(Looper.myLooper())) {
            throw new IllegalThreadStateException("Must call acquire on the main thread");
        }
        ++acquired;
    }

    void release() {
        if (acquired <= 0) {
            throw new IllegalStateException("Cannot release a recycled or not yet acquired resource");
        }
        if (!Looper.getMainLooper().equals(Looper.myLooper())) {
            throw new IllegalThreadStateException("Must call release on the main thread");
        }
        if (--acquired == 0) {
            listener.onResourceReleased(key, this);
        }
    }
}

也就是说,当acquired变量大于0的时候,说明图片正在使用中,也就应该放到activeResources弱引用缓存当中。而经过release()之后,如果acquired变量等于0了,说明图片已经不再被使用了,那么此时会在第24行调用listener的onResourceReleased()方法来释放资源,这个listener就是Engine对象,我们来看下它的onResourceReleased()方法:

public class Engine implements EngineJobListener,
        MemoryCache.ResourceRemovedListener,
        EngineResource.ResourceListener {

    private final MemoryCache cache;
    private final Map<Key, WeakReference<EngineResource<?>>> activeResources;
    ...    

    @Override
    public void onResourceReleased(Key cacheKey, EngineResource resource) {
        Util.assertMainThread();
        activeResources.remove(cacheKey);
        if (resource.isCacheable()) {
            cache.put(cacheKey, resource);
        } else {
            resourceRecycler.recycle(resource);
        }
    }

    ...
}

可以看到,这里首先会将缓存图片从activeResources中移除,然后再将它put到LruResourceCache当中。这样也就实现了正在使用中的图片使用弱引用来进行缓存,不在使用中的图片使用LruCache来进行缓存的功能。

这就是Glide内存缓存的实现原理。

九、硬盘缓存

接下来我们开始学习硬盘缓存方面的内容。

不知道你还记不记得,在本系列的第一篇文章中我们就使用过硬盘缓存的功能了。当时为了禁止Glide对图片进行硬盘缓存而使用了如下代码:

Glide.with(this)
     .load(url)
     .diskCacheStrategy(DiskCacheStrategy.NONE)
     .into(imageView);

调用diskCacheStrategy()方法并传入DiskCacheStrategy.NONE,就可以禁用掉Glide的硬盘缓存功能了。

这个diskCacheStrategy()方法基本上就是Glide硬盘缓存功能的一切,它可以接收四种参数:

DiskCacheStrategy.NONE: 表示不缓存任何内容。
DiskCacheStrategy.SOURCE: 表示只缓存原始图片。
DiskCacheStrategy.RESULT: 表示只缓存转换过后的图片(默认选项)。
DiskCacheStrategy.ALL : 表示既缓存原始图片,也缓存转换过后的图片。
上面四种参数的解释本身并没有什么难理解的地方,但是有一个概念大家需要了解,就是当我们使用Glide去加载一张图片的时候,Glide默认并不会将原始图片展示出来,而是会对图片进行压缩和转换(我们会在后面学习这方面的内容)。总之就是经过种种一系列操作之后得到的图片,就叫转换过后的图片。而Glide默认情况下在硬盘缓存的就是转换过后的图片,我们通过调用diskCacheStrategy()方法则可以改变这一默认行为。

好的,关于Glide硬盘缓存的用法也就只有这么多,那么接下来还是老套路,我们通过阅读源码来分析一下,Glide的硬盘缓存功能是如何实现的。

接下来我们看一下Glide是在哪里读取硬盘缓存的。这里又需要回忆一下上篇文章中的内容了,Glide开启线程来加载图片后会执行EngineRunnable的run()方法,run()方法中又会调用一个decode()方法,那么我们重新再来看一下这个decode()方法的源码:

private Resource<?> decode() throws Exception {
    if (isDecodingFromCache()) {
        return decodeFromCache();
    } else {
        return decodeFromSource();
    }
}

可以看到,这里会分为两种情况,一种是调用decodeFromCache()方法从硬盘缓存当中读取图片,一种是调用decodeFromSource()来读取原始图片。默认情况下Glide会优先从缓存当中读取,只有缓存中不存在要读取的图片时,才会去读取原始图片。那么我们现在来看一下decodeFromCache()方法的源码,如下所示:

private Resource<?> decodeFromCache() throws Exception {
    Resource<?> result = null;
    try {
        result = decodeJob.decodeResultFromCache();
    } catch (Exception e) {
        if (Log.isLoggable(TAG, Log.DEBUG)) {
            Log.d(TAG, "Exception decoding result from cache: " + e);
        }
    }
    if (result == null) {
        result = decodeJob.decodeSourceFromCache();
    }
    return result;
}

可以看到,这里会先去调用DecodeJob的decodeResultFromCache()方法来获取缓存,如果获取不到,会再调用decodeSourceFromCache()方法获取缓存,这两个方法的区别其实就是DiskCacheStrategy.RESULT和DiskCacheStrategy.SOURCE这两个参数的区别,相信不需要我再做什么解释吧。

那么我们来看一下这两个方法的源码吧,如下所示:

public Resource<Z> decodeResultFromCache() throws Exception {
    if (!diskCacheStrategy.cacheResult()) {
        return null;
    }
    long startTime = LogTime.getLogTime();
    Resource<T> transformed = loadFromCache(resultKey);
    startTime = LogTime.getLogTime();
    Resource<Z> result = transcode(transformed);
    return result;
}

public Resource<Z> decodeSourceFromCache() throws Exception {
    if (!diskCacheStrategy.cacheSource()) {
        return null;
    }
    long startTime = LogTime.getLogTime();
    Resource<T> decoded = loadFromCache(resultKey.getOriginalKey());
    return transformEncodeAndTranscode(decoded);
}

可以看到,它们都是调用了loadFromCache()方法从缓存当中读取数据,如果是decodeResultFromCache()方法就直接将数据解码并返回,如果是decodeSourceFromCache()方法,还要调用一下transformEncodeAndTranscode()方法先将数据转换一下再解码并返回。

然而我们注意到,这两个方法中在调用loadFromCache()方法时传入的参数却不一样,一个传入的是resultKey,另外一个却又调用了resultKey的getOriginalKey()方法。这个其实非常好理解,刚才我们已经解释过了,Glide的缓存Key是由10个参数共同组成的,包括图片的width、height等等。但如果我们是缓存的原始图片,其实并不需要这么多的参数,因为不用对图片做任何的变化。那么我们来看一下getOriginalKey()方法的源码:

public Key getOriginalKey() {
    if (originalKey == null) {
        originalKey = new OriginalKey(id, signature);
    }
    return originalKey;
}

可以看到,这里其实就是忽略了绝大部分的参数,只使用了id和signature这两个参数来构成缓存Key。而signature参数绝大多数情况下都是用不到的,因此基本上可以说就是由id(也就是图片url)来决定的Original缓存Key。

搞明白了这两种缓存Key的区别,那么接下来我们看一下loadFromCache()方法的源码吧:

private Resource<T> loadFromCache(Key key) throws IOException {
    File cacheFile = diskCacheProvider.getDiskCache().get(key);
    if (cacheFile == null) {
        return null;
    }
    Resource<T> result = null;
    try {
        result = loadProvider.getCacheDecoder().decode(cacheFile, width, height);
    } finally {
        if (result == null) {
            diskCacheProvider.getDiskCache().delete(key);
        }
    }
    return result;
}

这个方法的逻辑非常简单,调用getDiskCache()方法获取到的就是Glide自己编写的DiskLruCache工具类的实例,然后调用它的get()方法并把缓存Key传入,就能得到硬盘缓存的文件了。如果文件为空就返回null,如果文件不为空则将它解码成Resource对象后返回即可。

这样我们就将硬盘缓存读取的源码分析完了,那么硬盘缓存又是在哪里写入的呢?
刚才已经分析过了,在没有缓存的情况下,会调用decodeFromSource()方法来读取原始图片。那么我们来看下这个方法:

public Resource<Z> decodeFromSource() throws Exception {
    Resource<T> decoded = decodeSource();
    return transformEncodeAndTranscode(decoded);
}

这个方法中只有两行代码,decodeSource()顾名思义是用来解析原图片的,而transformEncodeAndTranscode()则是用来对图片进行转换和转码的。我们先来看decodeSource()方法:

private Resource<T> decodeSource() throws Exception {
    Resource<T> decoded = null;
    try {
        long startTime = LogTime.getLogTime();
        final A data = fetcher.loadData(priority);
        if (isCancelled) {
            return null;
        }
        decoded = decodeFromSourceData(data);
    } finally {
        fetcher.cleanup();
    }
    return decoded;
}

private Resource<T> decodeFromSourceData(A data) throws IOException {
    final Resource<T> decoded;
    if (diskCacheStrategy.cacheSource()) {
        decoded = cacheAndDecodeSourceData(data);
    } else {
        long startTime = LogTime.getLogTime();
        decoded = loadProvider.getSourceDecoder().decode(data, width, height);
    }
    return decoded;
}

private Resource<T> cacheAndDecodeSourceData(A data) throws IOException {
    long startTime = LogTime.getLogTime();
    SourceWriter<A> writer = new SourceWriter<A>(loadProvider.getSourceEncoder(), data);
    diskCacheProvider.getDiskCache().put(resultKey.getOriginalKey(), writer);
    startTime = LogTime.getLogTime();
    Resource<T> result = loadFromCache(resultKey.getOriginalKey());
    return result;
}

这里会在第5行先调用fetcher的loadData()方法读取图片数据,然后在第9行调用decodeFromSourceData()方法来对图片进行解码。接下来会在第18行先判断是否允许缓存原始图片,如果允许的话又会调用cacheAndDecodeSourceData()方法。而在这个方法中同样调用了getDiskCache()方法来获取DiskLruCache实例,接着调用它的put()方法就可以写入硬盘缓存了,注意原始图片的缓存Key是用的resultKey.getOriginalKey()。

好的,原始图片的缓存写入就是这么简单,接下来我们分析一下transformEncodeAndTranscode()方法的源码,来看看转换过后的图片缓存是怎么写入的。代码如下所示:

private Resource<Z> transformEncodeAndTranscode(Resource<T> decoded) {
    long startTime = LogTime.getLogTime();
    Resource<T> transformed = transform(decoded);
    writeTransformedToCache(transformed);
    startTime = LogTime.getLogTime();
    Resource<Z> result = transcode(transformed);
    return result;
}

private void writeTransformedToCache(Resource<T> transformed) {
    if (transformed == null || !diskCacheStrategy.cacheResult()) {
        return;
    }
    long startTime = LogTime.getLogTime();
    SourceWriter<Resource<T>> writer = new SourceWriter<Resource<T>>(loadProvider.getEncoder(), transformed);
    diskCacheProvider.getDiskCache().put(resultKey, writer);
}

这里的逻辑就更加简单明了了。先是在第3行调用transform()方法来对图片进行转换,然后在writeTransformedToCache()方法中将转换过后的图片写入到硬盘缓存中,调用的同样是DiskLruCache实例的put()方法,不过这里用的缓存Key是resultKey。

这样我们就将Glide硬盘缓存的实现原理也分析完了。

十、结束语

能看到这,无论有没有全都看明白,但是至少对于阅读长篇源码也有了一定的基础,简单来讲就是把一些不是很重要的细节过滤掉,按照主流程走,不求甚解就好。如果一遍不是很明白,就过几天再看一遍,当有一天完全看明白后,就会发现自己收益良多。世界上没有到不了的地方,只要能够坚持下去,一切皆有可能。(注:本文也是参考了多位大牛的文章及一步一步的查阅源码而成,有写的不好的地方,欢迎指出)

发布了30 篇原创文章 · 获赞 78 · 访问量 15万+

猜你喜欢

转载自blog.csdn.net/u010302765/article/details/78286933
今日推荐