Image Processing28(Image Segmentation with Distance Transform and Watershed Algorithm )

Goal

In this tutorial you will learn how to:

  • Use the OpenCV function cv::filter2D in order to perform some laplacian filtering for image sharpening
  • 使用OpenCV函数cv :: filter2D执行一些laplacian图像锐化
  • Use the OpenCV function cv::distanceTransform in order to obtain the derived representation of a binary image, where the value of each pixel is replaced by its distance to the nearest background pixel
  • 使用OpenCV函数cv :: distanceTransform为了获得二进制图像的导数,其中每个像素的值被其到最接近的背景像素的距离替换
  • Use the OpenCV function cv::watershed in order to isolate objects in the image from the background
  • 使用OpenCV函数cv :: watershed来隔离图像中的对象与背景

Code

#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main()
{
    // Load the image
    Mat src = imread("cards.png");
    // Check if everything was fine
    if (!src.data)
        return -1;
    // Show source image
    imshow("Source Image", src);
    // Change the background from white to black, since that will help later to extract
    // better results during the use of Distance Transform

    for( int x = 0; x < src.rows; x++ ) {
      for( int y = 0; y < src.cols; y++ ) {
          if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) {
            src.at<Vec3b>(x, y)[0] = 0;
            src.at<Vec3b>(x, y)[1] = 0;
            src.at<Vec3b>(x, y)[2] = 0;
          }
        }
    }
    // Show output image
    imshow("Black Background Image", src);
    // Create a kernel that we will use for accuting/sharpening our image
    Mat kernel = (Mat_<float>(3,3) <<
            1,  1, 1,
            1, -8, 1,
            1,  1, 1); // an approximation of second derivative, a quite strong kernel
    // do the laplacian filtering as it is
    // well, we need to convert everything in something more deeper then CV_8U
    // because the kernel has some negative values,
    // and we can expect in general to have a Laplacian image with negative values
    // BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
    // so the possible negative number will be truncated

    Mat imgLaplacian;
    Mat sharp = src; // copy source image to another temporary one
    filter2D(sharp, imgLaplacian, CV_32F, kernel);
    src.convertTo(sharp, CV_32F);
    Mat imgResult = sharp - imgLaplacian;
    // convert back to 8bits gray scale
    imgResult.convertTo(imgResult, CV_8UC3);
    imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
    // imshow( "Laplace Filtered Image", imgLaplacian );
    imshow( "New Sharped Image", imgResult );
    src = imgResult; // copy back
    // Create binary image from source image
    Mat bw;
    cvtColor(src, bw, COLOR_BGR2GRAY);
    threshold(bw, bw, 40, 255, THRESH_BINARY | THRESH_OTSU);
    imshow("Binary Image", bw);
    // Perform the distance transform algorithm
    Mat dist;
    distanceTransform(bw, dist, DIST_L2, 3);
    // Normalize the distance image for range = {0.0, 1.0}
    // so we can visualize and threshold it

    normalize(dist, dist, 0, 1., NORM_MINMAX);
    imshow("Distance Transform Image", dist);
    // Threshold to obtain the peaks
    // This will be the markers for the foreground objects

    threshold(dist, dist, .4, 1., THRESH_BINARY);
    // Dilate a bit the dist image
    Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
    dilate(dist, dist, kernel1);
    imshow("Peaks", dist);
    // Create the CV_8U version of the distance image
    // It is needed for findContours()

    Mat dist_8u;
    dist.convertTo(dist_8u, CV_8U);
    // Find total markers
    vector<vector<Point> > contours;
    findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
    // Create the marker image for the watershed algorithm
    Mat markers = Mat::zeros(dist.size(), CV_32SC1);
    // Draw the foreground markers
    for (size_t i = 0; i < contours.size(); i++)
        drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1);
    //Draw the background marker
    circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
    imshow("Markers", markers*10000);
    // Perform the watershed algorithm
    watershed(src, markers);
    Mat mark = Mat::zeros(markers.size(), CV_8UC1);
    //markers.convertTo(mark, CV_8UC1);
    //bitwise_not(mark, mark);
    //imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
                                  // image looks like at that point
    // Generate random colors

    vector<Vec3b> colors;
    for (size_t i = 0; i < contours.size(); i++)
    {
        int b = theRNG().uniform(0, 255);
        int g = theRNG().uniform(0, 255);
        int r = theRNG().uniform(0, 255);
        colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
    }
    // Create the result image
    Mat dst = Mat::zeros(markers.size(), CV_8UC3);
    //cout << markers.at<int>(2,2) << endl;
    // Fill labeled objects with random colors

    for (int i = 0; i < markers.rows; i++)
    {
        for (int j = 0; j < markers.cols; j++)
        {
            int index = markers.at<int>(i,j);
            if (index > 0 && index <= static_cast<int>(contours.size()))
                dst.at<Vec3b>(i,j) = colors[index-1];
            else
                dst.at<Vec3b>(i,j) = Vec3b(0,0,0);
        }
    }
    // Visualize the final image
    imshow("Final Result", dst);
    waitKey(0);
    return 0;

}

需要说的是,watershed(src, markers);函数,尽管只有两个参数,但并不简单,第一个参数是原图像,第二个参数需要输入种子标记。

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)

set(CMAKE_CXX_FLAGS "-std=c++11")
project( DisplayImage )
find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_INCLUDE_DIRS} )
add_executable( DisplayImage main.cpp )
target_link_libraries( DisplayImage ${OpenCV_LIBS} )


install(TARGETS DisplayImage RUNTIME DESTINATION bin

Results

输入结果较多,这里不再一一显示。


猜你喜欢

转载自blog.csdn.net/qq_27806947/article/details/80325015
今日推荐