3.2 The Algebra of Linear Transformations

这一节内容非常丰富。Theorem 4提出了linear transformation的线性组合是什么,以及所有的linear transformation是一个vector space。Theorem 5是说明 L ( V , W ) L(V,W) V , W V,W 的dimension之间的关系。Theorem 6定义了linear transformation的composition。在同一个space上的linear transformation称为operator,有翻译为算子的。EXAMPLE8-10都是很好的例子,其揭示了linear operator可以是多样的。之后定义invertible的概念,注意invertible是在两个不同的space中可以成为单位算子,Theorem 7说明inverse也是linear transformation。然后是non-singular的概念,很类似于函数中的injective,Theorem 8说明non-singular的线性变换可以保持线性无关性。EXAMPLE11说明non-singular和onto之间没有必然的关系,EXAMPLE12则是一个同时non-singular和onto(从而invertible)的例子。Theorem 9说明,如果 dim V = dim W \dim V=\dim W ,那么从 V V W W 的线性变换 T T 满足non-singular、onto和invertible三者成立其一则另外两者也成立。最后给出了group和commutative group的定义。

Exercises

  1. Let T T and U U be the linear operators on R 2 R^2 defined by
    T ( x 1 , x 2 ) = ( x 2 , x 1 ) and U ( x 1 , x 2 ) = ( x 1 , 0 ) T(x_1,x_2)=(x_2,x_1)\quad\text{and}\quad U(x_1,x_2)=(x_1,0)
    ( a ) How would you describe T T and U U geometrically?
    ( b ) Give rules like the ones definning T T and U U for each of the transformations ( U + T ) , U T , T U , T 2 , U 2 (U+T),UT,TU,T^2,U^2 .
    Solution:
    ( a ) T T is a symmetric transformation with respect to the line y = x y=x , U U is the projection on x x -axis.
    ( b ) We have
    ( U + T ) ( x 1 , x 2 ) = ( x 1 + x 2 , x 1 ) U T ( x 1 , x 2 ) = ( x 2 , 0 ) T U ( x 1 , x 2 ) = ( 0 , x 1 ) T 2 ( x 1 , x 2 ) = ( x 1 , x 2 ) U 2 ( x 1 , x 2 ) = ( x 1 , 0 ) \begin{aligned}(U+T)(x_1,x_2 )&=(x_1+x_2,x_1 ) \\ UT(x_1,x_2 )&=(x_2,0) \\ TU(x_1,x_2 )&=(0,x_1 ) \\ T^2 (x_1,x_2 )&=(x_1,x_2 ) \\ U^2 (x_1,x_2 )&=(x_1,0)\end{aligned}

  2. Let T T be the (unique) linear operator on C 3 C^3 for which
    T ϵ 1 = ( 1 , 0 , i ) , T ϵ 2 = ( 0 , 1 , 1 ) , T ϵ 3 = ( i , 1 , 0 ) . T\epsilon_1 =(1,0,i),\quad T\epsilon_2 =(0,1,1),\quad T\epsilon_3 =(i,1,0).
    Is T T invertible?
    Solution: No, since T ( ϵ 3 i ϵ 1 ) = ( i , 1 , 0 ) ( i , 0 , 1 ) = ( 0 , 1 , 1 ) = T ϵ 2 T(ϵ_3-iϵ_1 )=(i,1,0)-(i,0,-1)=(0,1,1)=Tϵ_2 , thus
    T ( ϵ 3 i ϵ 1 ϵ 2 ) = 0 T(ϵ_3-iϵ_1-ϵ_2 )=0
    but ϵ 3 i ϵ 1 ϵ 2 = ( i , 1 , 1 ) 0 ϵ_3-iϵ_1-ϵ_2=(-i,-1,1)≠0 .

  3. Let T T be the linear operator on R 3 R^3 defined by
    T ( x 1 , x 2 , x 3 ) = ( 3 x 1 , x 1 x 2 , 2 x 1 + x 2 + x 3 ) T(x_1,x_2,x_3)=(3x_1,x_1-x_2,2x_1+x_2+x_3)
    Is T T invertible? If so, find a rule for T 1 T^{-1} like the one which defines T T .
    Solution: T T is invertible, the rule for T 1 T^{-1} can be described as
    T 1 ( x 1 , x 2 , x 3 ) = ( 1 3 x 1 , 1 3 x 1 x 2 , x 1 + x 2 + x 3 ) T^{-1} (x_1,x_2,x_3 )=\left(\frac{1}{3} x_1,\frac{1}{3} x_1-x_2,-x_1+x_2+x_3 \right)

  4. For the liear operator T T of Exercise 3, prove that
    ( T 2 I ) ( T 3 I ) = 0. (T^2-I)(T-3I)=0.
    Solution: Since
    ( T 3 I ) ( x 1 , x 2 , x 3 ) = T ( x 1 , x 2 , x 3 ) 3 ( x 1 , x 2 , x 3 ) = ( 0 , x 1 4 x 2 , 2 x 1 + x 2 2 x 3 ) \begin{aligned}(T-3I)(x_1,x_2,x_3 )&=T(x_1,x_2,x_3 )-3(x_1,x_2,x_3 )\\&=(0,x_1-4x_2,2x_1+x_2-2x_3 )\end{aligned}
    and
    ( T 2 I ) ( x 1 , x 2 , x 3 ) = T 2 ( x 1 , x 2 , x 3 ) ( x 1 , x 2 , x 3 ) = T ( 3 x 1 , x 1 x 2 , 2 x 1 + x 2 + x 3 ) ( x 1 , x 2 , x 3 ) = ( 9 x 1 , 3 x 1 ( x 1 x 2 ) , 6 x 1 + ( x 1 x 2 ) + ( 2 x 1 + x 2 + x 3 ) ) ( x 1 , x 2 , x 3 ) = ( 9 x 1 , 2 x 1 + x 2 , 9 x 1 + x 3 ) ( x 1 , x 2 , x 3 ) = ( 8 x 1 , 2 x 1 , 9 x 1 ) \begin{aligned}&{\quad}(T^2-I)(x_1,x_2,x_3 )\\&=T^2 (x_1,x_2,x_3 )-(x_1,x_2,x_3 )\\&=T(3x_1,x_1-x_2,2x_1+x_2+x_3 )-(x_1,x_2,x_3 )\\&=(9x_1,3x_1-(x_1-x_2 ),6x_1+(x_1-x_2 )+(2x_1+x_2+x_3 ))-(x_1,x_2,x_3 )\\&=(9x_1,2x_1+x_2 ,9x_1+x_3)-(x_1,x_2,x_3 )\\&=(8x_1,2x_1,9x_1)\end{aligned}
    So
    ( T 2 I ) ( T 3 I ) ( x 1 , x 2 , x 3 ) = ( T 2 I ) ( 0 , x 1 4 x 2 , 2 x 1 + x 2 2 x 3 ) = ( 0 , 0 , 0 ) (T^2-I)(T-3I)(x_1,x_2,x_3 )=(T^2-I)(0,x_1-4x_2,2x_1+x_2-2x_3 )=(0,0,0)

  5. Let C 2 × 2 C^{2\times 2} be the complex vector space of 2 × 2 2\times 2 matrices with complex entries. Let
    B = [ 1 1 4 4 ] B=\begin{bmatrix}1&-1\\-4&4\end{bmatrix}
    and let T T be the linear operator on C 2 × 2 C^{2\times 2} defined by T ( A ) = B A T(A)=BA . What is the rank of T T ? Can you describe T 2 T^2 ?
    Solution: If A = [ a b c d ] A=\begin{bmatrix}a&b\\c&d\end{bmatrix} , then T ( A ) = B A = [ 1 1 4 4 ] [ a b c d ] = [ a c b d 4 c 4 a 4 d 4 b ] T(A)=BA=\begin{bmatrix}1&-1\\-4&4\end{bmatrix}\begin{bmatrix}a&b\\c&d\end{bmatrix}=\begin{bmatrix}a-c&b-d\\4c-4a&4d-4b\end{bmatrix}
    the rank of T T is 2. Also we have T 2 ( A ) = T ( T ( A ) ) = [ 1 1 4 4 ] [ a c b d 4 c 4 a 4 d 4 b ] = [ 5 a 5 c 5 b 5 d 20 c 20 a 20 d 20 b ] \begin{aligned}T^2(A)=T(T(A))&=\begin{bmatrix}1&-1\\-4&4\end{bmatrix}\begin{bmatrix}a-c&b-d\\4c-4a&4d-4b\end{bmatrix}\\&=\begin{bmatrix}5a-5c&5b-5d\\20c-20a&20d-20b\end{bmatrix}\end{aligned} .

  6. Let T T be a linear transformation from R 3 R^3 into R 2 R^2 , and let U U be a linear transformation from R 2 R^2 into R 3 R^3 . Prove that the transformation U T UT is not invertible. Generalize the theorem.
    Solution: Let a = T ϵ 1 , b = T ϵ 2 , c = T ϵ 3 a=Tϵ_1,b=Tϵ_2,c=Tϵ_3 , then a , b , c R 2 a,b,c∈R^2 , thus are linearly dependent, without loss of generality, we suppose c = k 1 a + k 2 b , k 1 , k 2 R c=k_1 a+k_2 b,k_1,k_2∈R , then k 1 a + k 2 b c = 0 k_1 a+k_2 b-c=0 , or
    k 1 T ϵ 1 + k 2 T ϵ 2 T ϵ 3 = T ( k 1 ϵ 1 + k 2 ϵ 2 ϵ 3 ) = 0 k_1 Tϵ_1+k_2 Tϵ_2-Tϵ_3=T(k_1 ϵ_1+k_2 ϵ_2-ϵ_3 )=0
    Notice k 1 ϵ 1 + k 2 ϵ 2 ϵ 3 0 k_1 ϵ_1+k_2 ϵ_2-ϵ_3≠0 , we can have
    U T ( k 1 ϵ 1 + k 2 ϵ 2 ϵ 3 ) = U ( 0 ) = 0 UT(k_1 ϵ_1+k_2 ϵ_2-ϵ_3 )=U(0)=0
    thus U T UT is not invertible.

  7. Find two linear operators T T and U U on R 2 R^2 such that T U = 0 TU=0 but U T 0 UT\neq 0 .
    Solution:
    Let U ( x 1 , x 2 ) = ( x 1 , 0 ) , T ( x 1 , x 2 ) = ( x 2 , 0 ) U(x_1,x_2 )=(x_1,0),T(x_1,x_2 )=(x_2,0) , then
    T U ( x 1 , x 2 ) = T ( x 1 , 0 ) = ( 0 , 0 ) , x 1 , x 2 R U T ( 0 , 1 ) = U ( 1 , 0 ) = ( 1 , 0 ) TU(x_1,x_2 )=T(x_1,0)=(0,0),∀x_1,x_2∈R\\UT(0,1)=U(1,0)=(1,0)

  8. Let V V be a vector space over the field F F and T T a linear operator on V V . If T 2 = 0 T^2=0 , what can you say about the relation of the range of T T to the null space of T T ? Give an example of a linear operator T T on R 2 R^2 such that T 2 = 0 T^2=0 but T 0 T\neq 0 .
    Solution: If T 2 = 0 T^2=0 , then for any α range  T α∈\text{range }T , we have α = T β , β V α=Tβ,β∈V , thus T α = T 2 β = 0 Tα=T^2 β=0 , so α α also belongs to the null space of T T , it follows that range  T \text{range }T is a subspace of the null space of T T .
    T ( x 1 , x 2 ) = ( x 2 , 0 ) T(x_1,x_2 )=(x_2,0) is an example of T 2 = 0 T^2=0 , while T 0 T≠0 .

  9. Let T T be a linear operator on the finite-dimensional space V V . Suppose there is a linear operator U U on V V such that T U = I TU=I . Prove that T T is invertible and U = T 1 U=T^{-1} . Give an example which shows that this is false when V V is not finite dimensional.
    Solution: For any α V α∈V , we have α = ( T U ) ( α ) = T ( U α ) α=(TU)(α)=T(Uα) , this means α range  T α∈\text{range }T , so the range of T T is V V , by Theorem 9, T T is invertible. To see U = T 1 U=T^{-1} , notice that T 1 T = I T^{-1} T=I and T U = I TU=I , thus
    U = I U = ( T 1 T ) U = T 1 ( T U ) = T 1 I = T 1 U=IU=(T^{-1} T)U=T^{-1} (TU)=T^{-1} I=T^{-1}
    If T = D T=D on the space of polynomial functions, then let U U be the integrable operator on the space of polynomial functions, we have D U = I DU=I , but D D is not invertible.

  10. Let A A be an m × n m\times n with entries in F F and let T T be the linear transformation from F n × 1 F^{n\times 1} into F m × 1 F^{m\times 1} defined by T ( X ) = A X T(X)=AX . Show that if m < n m<n it may happen that T T is onto without being non-singular. Similarly, show that if m > n m>n we may have T T non-singular but not onto.
    Solution: If m < n m<n , then the system A X = b AX=b can have a solution if rank A = m A=m , so T T can be onto, but A X = 0 AX=0 must have an nonzero solution, since the solution space has dimension n m 1 n-m≥1 .
    If m > n m>n , then let A X = x 1 A 1 + + x n A n AX=x_1 A_1+\dots+x_n A_n , each A i A_i a m × 1 m×1 vector, as long as those A i A_i are linearly independent, A X = 0 AX=0 will mean x i = 0 x_i=0 and X = 0 X=0 , so T T is non-singular, but dim F m × 1 = m \dim F^{m×1}=m and A 1 , , A n A_1,\dots,A_n cannot span F m × 1 F^{m×1} , thus T T is not onto.

  11. Let V V be a finite-dimensional vector space and let T T be a linear operator on V V . Suppose that rank  ( T 2 ) = rank  ( T ) \text{rank }(T^2)=\text{rank }(T) . Prove that the range and null space of T T are disjoint, i.e., have only the zero vector in common.
    Solution: Assume α 0 , α range  T null  T α≠0,α∈\text{range }T∩\text{null }T , then T α = 0 Tα=0 , and α α is a linear independent set in range T T , thus can be expanded to a basis of range T T , namely ( α , β 1 , , β n ) (α,β_1,\dots,β_n ) , so rank  ( T ) = n + 1 \text{rank }(T)=n+1 .
    Notice that range  T 2 \text{range }T^2 is the set of vectors T 2 β , β V T^2 β,β∈V , and T 2 β = T ( T β ) T^2 β=T(Tβ) , as T β range  T Tβ∈\text{range }T , we have T β = y α + i = 1 n y i β i Tβ=yα+∑_{i=1}^ny_i β_i , in which y , y 1 , , y n y,y_1,\cdots,y_n are scalars. So T 2 β = T ( y α + i = 1 n y i β i ) = i = 1 n y i T β i T^2 β=T(yα+∑_{i=1}^ny_i β_i)=∑_{i=1}^ny_i Tβ_i , which means T β 1 , , T β n Tβ_1,…,Tβ_n spans range T 2 T^2 , so rank  ( T 2 ) n \text{rank }(T^2 )≤n , a contradiction.

  12. Let p , m p,m and n n be positive integers and F F a field. Let V V be the space of m × n m\times n matrices over F F and W W the space of p × n p\times n matrices over F F . Let B B be a fixed p × m p\times m matrix and let T T be the linear transformation from V V into W W defined by T ( A ) = B A T(A)=BA . Prove that T T is invertible if and only if p = m p=m and B B is an invertible m × m m\times m matrix.
    Solution: If p = m p=m and B B is an invertible m × m m×m matrix, then define U ( A ) = B 1 A U(A)=B^{-1} A , we have T U ( A ) = T ( B 1 A ) = B ( B 1 A ) = ( B B 1 ) A = A TU(A)=T(B^{-1} A)=B(B^{-1}A)=(BB^{-1})A=A and U T ( A ) = U ( B A ) = B 1 ( B A ) = ( B B 1 ) A = A UT(A)=U(BA)=B^{-1} (BA)=(BB^{-1})A=A . Thus T T is invertible and T 1 ( A ) = B 1 A T^{-1} (A)=B^{-1} A .
    Conversely, if T T is invertible, then T T is non-singular and range  T = W \text{range }T=W , use Exercise 3.2.10 we know if p > m p>m , then T T cannot be onto, if p < m p<m , then T T cannot be non-singular. Thus p = m p=m and B B is a m × m m×m matrix, if B is not invertible then the column vectors of B B are linearly dependent, thus there is x 1 , , x m x_1,\dots,x_m not all 0 such that x 1 b 1 + + x m b m = 0 x_1 b_1+\dots+x_m b_m=0 , then let A A be a matrix with x 1 , , x m x_1,\dots,x_m be in the first column and 0 otherwise, we have T ( A ) = 0 T(A)=0 , this contradicts T T being non-singular. Thus B B must be invertible.

发布了77 篇原创文章 · 获赞 14 · 访问量 2788

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/103971373