2018/03/09 Seminar总结

一、电路部分

1、施密特触发器

重要特性:施密特触发器具有如下特性:输入电压有两个阀值VL、VH,VL施密特触发器通常用作缓冲器消除输入端的干扰。

 施密特触发器原理及应用 - martin - 我和嵌入式的关系

施密特波形图

  施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。

  门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压。正向阈值电压与负向阈值电压之差称为回差电压。

  它是一种阈值开关电路,具有突变输入——输出特性的门电路。这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。

  利用施密特触发器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。输入的信号只要幅度大于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号。

  当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的.

一般比较器只有一个作比较的临界电压,若输入端有噪声来回多次穿越临界电压时,输出端即受到干扰,其正负状态产生不正常转换,如图1所示。


施密特触发器原理及应用 - martin - 我和嵌入式的关系

                           图1  (a)反相比较器                                                                (b)输入输出波形

施密特触发器如图2 所示,其输出电压经由R1 、R2 分压后送回到运算放大器的非反相输入端形成正反馈。因为正反馈会产生滞后(Hysteresis)现象,所以只要噪声的大小在两个临界电压(上临界电压及下临界电压)形成的滞后电压范围内,即可避免噪声误触发电路,如表1 所示

施密特触发器原理及应用 - martin - 我和嵌入式的关系

   图2  (a)反相斯密特触发器                         (b)输入输出波形

 

表1施密特触发器的滞后特性

上临界电压VTH

下临界电压VTL

滞后宽度(电压)VH

VTL<噪声<VTH

输入端信号νI 上升到比VTH 大时,触发电路使νO 转态

输入端信号νI 下降到比VTL 小时,触发电路使νO 转态

上、下临界电压差VH =VTH -VTL

噪声在容许的滞 后宽度范围内,νO 维持稳定状态

反相施密特触发器

电路如图2 所示,运算放大器的输出电压在正、负饱和之间转换:

νO= ±Vsat 。输出电压经由R1 、R2 分压后反馈到非反相输入端:ν+= βνO,

其中反馈因数=施密特触发器原理及应用 - martin - 我和嵌入式的关系

当νO为正饱和状态(+Vsat  )时,由正反馈得上临界电压

施密特触发器原理及应用 - martin - 我和嵌入式的关系

当νO 为负饱和状态(- Vsat  )时,由正反馈得下临界电压

施密特触发器原理及应用 - martin - 我和嵌入式的关系

VTH 与VTL 之间的电压差为滞后电压:施密特触发器原理及应用 - martin - 我和嵌入式的关系2R1

施密特触发器原理及应用 - martin - 我和嵌入式的关系

       图3   (a)输入、输出波形                                      (b)转换特性曲线

输入、输出波形及转换特性曲线如图3(b)所示。

当输入信号上升到大于上临界电压VTH 时,输出信号由正状态转变为

负状态即: νI >VTH→νo = - Vsat 

当输入信号下降到小于下临界电压VTL 时,输出信号由负状态转变为

正状态即: νI <VTL→νo = + Vsat 

输出信号在正、负两状态之间转变,输出波形为方波。

非反相施密特电路

施密特触发器原理及应用 - martin - 我和嵌入式的关系

                                                       图4 非反相史密特触发器

非反相施密特电路的输入信号与反馈信号均接至非反相输入端,如图4所示。

由叠加定理可得非反相端电压

施密特触发器原理及应用 - martin - 我和嵌入式的关系

反相输入端接地: ν- = 0,当ν+ = ν- = 0 时的输入电压即为临界电压。

将ν+ = 0 代入上式得施密特触发器原理及应用 - martin - 我和嵌入式的关系

整理后得临界电压施密特触发器原理及应用 - martin - 我和嵌入式的关系

当νo 为负饱和状态时,可得上临界电压

施密特触发器原理及应用 - martin - 我和嵌入式的关系

当νo为正饱和状态时,可得下临界电压,

施密特触发器原理及应用 - martin - 我和嵌入式的关系

VTH与VTL之间的电压差为滞后电压:

 施密特触发器原理及应用 - martin - 我和嵌入式的关系

施密特触发器原理及应用 - martin - 我和嵌入式的关系

      图5 (a)计算机仿真图                     (b)转换特性曲线

输入、输出波形与转换特性曲线如图5所示。

当输入信号下降到小于下临界电压VTL 时,输出信号由正状态转变为

负状态:νo < VTL →νo = - Vsat 

当输入信号上升到大于上临界电压VTH 时,输出信号由负状态转变为

正状态: νo > VTL →νo = + Vsat 

输出信号在正、负两状态之间转变,输出波形为方波。

1、推挽(pull-push)电路如下图所示

 

 

基本原理不多做介绍,由电路图基本可知晓,值得注意的是,在推挽电路中,两个三极管(或场效应管)应是不同类型的,上面的为NPN型,下面的为PNP型。从上面的电路图看,输入与输出为同极性。

2、开漏电路

 

开漏电路的输入输出互为相反极性。

       推挽电路和开漏电路的带负载能力不同,推挽电路带负载能力强,开漏电路带负载能力较弱,因此需要外接上拉电阻R1,所谓带负载能力,我个人理解的是,电路中电源内阻的分压或者分流现象,作为电压源,则要求内阻的阻值越小越好,因为此时内阻的分压可以忽略不计,作为电流源,则要求内阻的阻值越大越好,因为此时内阻的分流就可以忽略不计。

3、准双向开关


1)D触发器功能表
D
CLK
Q
QN
0
时钟上升沿
0
1
1
时钟上升沿
1
0
×
0
last Q
last QN
×
1
last Q
last QN[1] 
2)方程
3)时序图
波形图(CP,D,Q) 波形图(CP,D,Q)

     



      电路图如上所示,U1是D触发器,上升沿触发,Q的次态随D。

  1. 作为输入引脚使用时,也必须先向U1中写"1",以达到断开T1的目的。否则,当U1为0时,T1接通,pin短路接地,无论输入什么,读到的都是0;
  2. 准双向端口读取输入状态,默认为高。也就是判断外部输入信号的方法是"非低则为高"。即该结构只能准确的识别外部的低电平,无法区分悬空和真正的高。于是只要读到的不是0,都认为外部为1。

二、支持向量机


发布了14 篇原创文章 · 获赞 6 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/Luncles/article/details/79521872