易懂的奇异值分解

我们知道如果一个矩阵 A 是方阵,即行列维度相同(mxm),一般来说可以对 A 进行特征分解:

其中,U 的列向量是 A 的特征向量,Λ 是对角矩阵,Λ 对角元素是对应特征向量的特征值。

举个简单的例子,例如方阵 A 为:

那么对其进行特征分解,相应的 Python 代码为:

运行输出:

 特征分解就是把 A 拆分,如下所示:

其中,特征值 λ1=3.41421356,对应的特征向量 u1=[0.81649658 0.57735027];特征值 λ2=0.58578644,对应的特征向量 u2=[-0.81649658 0.57735027],特征向量均为列向量。

值得注意的是,特征向量都是单位矩阵,相互之间是线性无关的,但是并不正交。得出的结论是对于任意方阵,不同特征值对应的特征向量必然线性无关,但是不一定正交。

但是实际应用中,很多矩阵都是非方阵、非对称的。那么如何对这类矩阵进行分解呢?因此,我们就引入了针对维度为 mxn 矩阵的分解方法,称之为奇异值分解

假设矩阵 A 的维度为 mxn,虽然 A 不是方阵,但是下面的矩阵却是方阵,且维度分别为 mxm、nxn

因此,我们就可以分别对上面的方阵进行分解:

其中,Λ1 和 Λ2 是对焦矩阵,且对角线上非零元素均相同,即两个方阵具有相同的非零特征值,特征值令为 σ1, σ2, ... , σk。值得注意的是,k<=m 且 k<=n。

根据 σ1, σ2, ... , σk 就可以得到矩阵 A 的特征值为:

接下来,得到奇异值分解的公式:

 其中,P 称为左奇异矩阵,维度是 mxm,Q 称为右奇异矩阵,维度是 nxn。Λ 并不是方阵,其维度为 mxn,Λ 对角线上的非零元素就是 A 的特征值 λ1, λ2, ... , λk。图形化表示奇异值分解如下图所示:

举个简单的例子来说明,令 A 为 3x2 的矩阵:

计算得到特征向量 P 和对应的特征值 σ 为:

 

 计算得到特征向量 Q 和对应的特征值 σ 为:

可以得到 A 的特征值为:

 最后,整合矩阵相乘结果,满足奇异值分解公式。

奇异值分解可以写成以下和的形式:

 其中,p1 和 q1 分别为左奇异矩阵和右奇异矩阵的特征向量

如何形象化理解 SVD

对该图片进行奇异值分解,则该图片可写成以下和的形式:

λ1, λ2, ... , λk 是按照从大到小的顺序的。

首先,若只保留最大的奇异值 λ1,舍去其它奇异值,即 A=λ1p1q1T,然后作图: 

结果完全看不清楚,再多加几个奇异值,取前 5 个最大的奇异值,然后作图:

现在貌似有点轮廓了,继续增加奇异值,取前 10 个最大的奇异值,然后作图:

又清晰了一些,继续将奇异值增加到 20 个,然后作图:

现在已经比较清晰了,继续将奇异值增加到 50 个,然后作图:

可见,取前 50 个最大奇异值来重构图像时,已经非常清晰了。我们得到和原图差别不大的图像。也就是说,随着选择的奇异值的增加,重构的图像越来越接近原图像。

基于这个原理,奇异值分解可以用来进行图片压缩。例如在本例中,原始图片的维度是 870x870,总共需要保存的像素值是:870x870=756900。若使用 SVD,取前 50 个最大的奇异值即可,则总共需要存储的元素个数为:

(870+1+870)x50=87050

显然,所需存储量大大减小了。在需要存储许多高清图片,而存储空间有限的情况下,就可以利用 SVD,保留奇异值最大的若干项,舍去奇异值较小的项即可。

值得一提的是,奇异值从大到小衰减得特别快,在很多情况下,前 10% 甚至 1% 的奇异值的和就占了全部的奇异值之和的 99% 以上了。这对于数据压缩来说是个好事。

SVD 数据压缩的算法图示如下:

SVD 数据压缩的示例代码为:

发布了16 篇原创文章 · 获赞 1 · 访问量 4022

猜你喜欢

转载自blog.csdn.net/Wu_whiteHyacinth/article/details/82290043