"Visual SLAM Fourteen Lectures" ch7 Visual Odometer 1 Study Notes (2) - Practice Part Logarithmic Constraints to Solve Code Analysis of Camera Motion

      In this article, I record my understanding of the estimated camera pose code and the explanation of related functions through 2D-2D matching in the seventh lecture of "Visual SLAM Fourteen Lectures" - the practical part of visual odometer 1.

Theoretical knowledge can be found in my other blog:

"Visual SLAM Fourteen Lectures" study notes - ch7 visual odometer (1)_sticker_Ruan's Blog-CSDN Blog

1 code analysis:

The structure of the program is as follows:

Source code plus annotations (really very detailed!!!)

#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include<chrono>
// #include "extra.h" // use this if in OpenCV2

using namespace std;
using namespace cv;

/****************************************************
 * 本程序演示了如何使用2D-2D的特征匹配估计相机运动
 * **************************************************/
//一些自定义函数的声明
void find_feature_matches(
  const Mat &img_1, const Mat &img_2,
  std::vector<KeyPoint> &keypoints_1,
  std::vector<KeyPoint> &keypoints_2,
  std::vector<DMatch> &matches);

void pose_estimation_2d2d(
  std::vector<KeyPoint> keypoints_1,
  std::vector<KeyPoint> keypoints_2,
  std::vector<DMatch> matches,
  Mat &R, Mat &t);

// 像素坐标转相机归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K);

int main(int argc, char **argv) {
  // if (argc != 3) {
  //   cout << "usage: pose_estimation_2d2d img1 img2" << endl;
  //   return 1;
  // }
  //-- 读取图像

  chrono::steady_clock::time_point t1=chrono::steady_clock::now();//计时函数
  Mat img_1 = imread("/home/rxz/slambook2/ch7/1.png", CV_LOAD_IMAGE_COLOR); //前面引号里的是图片的位置
  Mat img_2 = imread("/home/rxz/slambook2/ch7/2.png", CV_LOAD_IMAGE_COLOR);
  assert(img_1.data && img_2.data && "Can not load images!");//assert()为断言函数,条件为假则停止执行

  vector<KeyPoint> keypoints_1, keypoints_2;
  vector<DMatch> matches;
  find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
  cout << "一共找到了" << matches.size() << "组匹配点" << endl;

  //-- 估计两张图像间运动
  Mat R, t;
  pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);

  //-- 验证E=t^R*scale
  //t_x把t向量写成矩阵形式 反对称矩阵,以下代码是构造一个3*3的矩阵
  Mat t_x =
    (Mat_<double>(3, 3) << 0, -t.at<double>(2, 0), t.at<double>(1, 0),
      t.at<double>(2, 0), 0, -t.at<double>(0, 0),
      -t.at<double>(1, 0), t.at<double>(0, 0), 0);

  cout << "t^R=" << endl << t_x * R << endl;

  //-- 验证对极约束
  Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1); //相机内参
  for (DMatch m: matches) {
    //queryIdx是关键点匹配对在第一幅图像上的的索引,trainIdx是另一副图像上的索引
    Point2d pt1 = pixel2cam(keypoints_1[m.queryIdx].pt, K); //将像素坐标转化成归一化坐标
    Mat y1 = (Mat_<double>(3, 1) << pt1.x, pt1.y, 1);   //将归一化坐标转化成3*1的列向量
    Point2d pt2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
    Mat y2 = (Mat_<double>(3, 1) << pt2.x, pt2.y, 1);
    Mat d = y2.t() * t_x * R * y1;   //y2.t()指的是对y2向量进行转置。验证书P167页,式(7.8)是否为零
    cout << "匹配点对的对极几何残差(epipolar constraint) = " << d << endl;
  }
  chrono::steady_clock::time_point t2=chrono::steady_clock::now();
  chrono::duration<double>time_used=chrono::duration_cast<chrono::duration<double>>(t2-t1);
  cout<<"程序所用时间:"<<time_used.count()<<"秒"<<endl;
    return 0;
}

void find_feature_matches(const Mat &img_1, const Mat &img_2,
                          std::vector<KeyPoint> &keypoints_1,
                          std::vector<KeyPoint> &keypoints_2,
                          std::vector<DMatch> &matches) {
  //-- 初始化
  Mat descriptors_1, descriptors_2;
  // used in OpenCV3
  Ptr<FeatureDetector> detector = ORB::create();
  Ptr<DescriptorExtractor> descriptor = ORB::create();
  Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
  //-- 第一步:检测 Oriented FAST 角点位置
  detector->detect(img_1, keypoints_1);
  detector->detect(img_2, keypoints_2);

  //-- 第二步:根据角点位置计算 BRIEF 描述子
  descriptor->compute(img_1, keypoints_1, descriptors_1);
  descriptor->compute(img_2, keypoints_2, descriptors_2);

  //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
  vector<DMatch> match;
  //BFMatcher matcher ( NORM_HAMMING );
  matcher->match(descriptors_1, descriptors_2, match);

  //-- 第四步:匹配点对筛选
  double min_dist = 100, max_dist = 0;  //初始化最大最小距离

  //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
  for (int i = 0; i < descriptors_1.rows; i++) {
    double dist = match[i].distance;
    if (dist < min_dist) min_dist = dist;
    if (dist > max_dist) max_dist = dist;
  }

  printf("-- Max dist : %f \n", max_dist);
  printf("-- Min dist : %f \n", min_dist);

  //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
  for (int i = 0; i < descriptors_1.rows; i++) {
    if (match[i].distance <= max(2 * min_dist, 30.0)) {
      matches.push_back(match[i]);
    }
  }
  // Mat image1;
  // drawMatches(img_1,keypoints_1,img_2,keypoints_2,matches,image1);
  // imshow("all match",image1);
  // waitKey(0);
  
}
//将像素点坐标转化成归一化坐标
Point2d pixel2cam(const Point2d &p, const Mat &K) {
  return Point2d
    (
      (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),//  x/z=(p.x-cx)/fx
      (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1) //  y/z=(p.y-cy)/fy
    );
}

void pose_estimation_2d2d(std::vector<KeyPoint> keypoints_1,
                          std::vector<KeyPoint> keypoints_2,
                          std::vector<DMatch> matches,
                          Mat &R, Mat &t) {
  // 相机内参,TUM Freiburg2
  Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);

  //-- 把匹配点转换为vector<Point2f>的形式
  vector<Point2f> points1;
  vector<Point2f> points2;

  for (int i = 0; i < (int) matches.size(); i++) {
    //queryIdx是一组关键点的索引,trainIdx是另一组关键点的索引.
    points1.push_back(keypoints_1[matches[i].queryIdx].pt);  //把匹配对中属于第一副图像的关键点给points1
    points2.push_back(keypoints_2[matches[i].trainIdx].pt); //同上
  }

  //-- 计算基础矩阵
  Mat fundamental_matrix;
  fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT);//CV_FM_8POINT采用八点法,采用8点法求解F = K^(-T) * E * K^(-1)
  cout << "fundamental_matrix is " << endl << fundamental_matrix << endl;

  //-- 计算本质矩阵
  Point2d principal_point(325.1, 249.7);  //相机光心, TUM dataset标定值
  double focal_length = 521;      //相机焦距, TUM dataset标定值
  Mat essential_matrix;
  essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point);//E = t(^) * R
  cout << "essential_matrix is " << endl << essential_matrix << endl;

  //-- 计算单应矩阵
  //-- 但是本例中场景不是平面,单应矩阵意义不大
  Mat homography_matrix;
  homography_matrix = findHomography(points1, points2, RANSAC, 3);
  cout << "homography_matrix is " << endl << homography_matrix << endl;

  //-- 从本质矩阵中恢复旋转和平移信息.
  // 此函数仅在Opencv3中提供
  recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
  cout << "R is " << endl << R << endl;
  cout << "t is " << endl << t << endl;

}

2 function analysis:

(1) findFundamentalMat() function

Function function: Calculate the fundamental matrix from the corresponding points in the two images.

Function form: findFundamentalMat(points1, points2, method, param1, param2, status) Detailed
explanation of parameters:
points1 – An array containing N points of the first image.
points2 – An array of second image points of the same size and format as points1.
method – the method to compute the fundamental matrix.
CV_FM_7POINT for a 7-point algorithm. N = 7
CV_FM_8POINT for an 8-point algorithm. N>=8 (This eight-point method is used to calculate the fundamental matrix F in this code)
CV_FM_RANSAC for the RANSAC algorithm. N>=8 (The homography matrix is ​​calculated in the code using RANSAC (Random Sampling Consistency))
CV_FM_LMEDS for the LMedS algorithm. N>=8
param1 – Parameters for RANSAC. It is the maximum distance from a point to an epipolar line in pixels beyond which points are considered outliers and are not used to compute the final essential matrix. It can be set to something like 1-3, depending on point positioning accuracy, image resolution, and image noise.
param2 – parameter for RANSAC or LMedS methods only. It specifies the desired confidence level (probability) that the estimated matrix is ​​correct.
status – Outputs an array of N elements, each of which is set to 0 for outliers and 1 for other points. This array is only computed in the RANSAC and LMedS methods. For other methods it is set to all 1s.

(2) at function

K.at(i,j): Read the element value of row i and column j of the specified matrix K;

In addition, the graphics storage in opencv3 is basically in Mat format. If we want to get the gray value or RGB value of a pixel, we can also read it through the at function. The specific form is:

1. For single-channel images

          image.at<uchar>(i,j)

2. For RGB images

    image.at<Vec3b>(i, j)[0]  
    image.at<Vec3b>(i, j)[1]  
    image.at<Vec3b>(i, j)[2]   

Note: In the image, i represents the number of columns and j represents the number of rows

(3)Mat_< double > ( 3,3 )

Meaning: Construct a 3*3 matrix, construct an explicit Mat class

In this code it is represented as follows:

Mat t_x =(Mat_<double>(3, 3) <<

0, -t.at<double>(2, 0), t.at<double>(1, 0),

t.at<double>(2, 0), 0, -t.at<double>(0, 0),

-t.at<double>(1, 0), t.at<double>(0, 0), 0);

As shown below:

3 Effect display

References

Guess you like

Origin blog.csdn.net/weixin_70026476/article/details/127842315