[Notes] 2.z transformation related concepts and properties

Sequence summation of geometric numbers
S ( n ) = a 1 ( 1 − qn ) 1 − q S(n) = \frac{a_1(1-q^n)}{1-q}S(n)=1qa1(1qn)
S ( ∞ ) = a 1 1 − q S(\infty)=\frac{a_1}{1-q} S()=1qa1

Laplace transform
X ( s ) = L [ x ( n ) ] = ∫ − ∞ ∞ x ( n ) e − stdt X(s)=L[x(n)]=\int_{-\infty}^ {\infty}x(n)e^{-st}dtX(s)=L[x(n)]=x(n)es t dt

z-transform

z = e s T z=e^{sT} z=esT
X ( z ) = ∑ n = − ∞ ∞ x ( n ) z − n X(z)=\sum_{n=-{\infty}}^{\infty}x(n)z^{-n} X(z)=n=x(n)zn
zero point: the z value that makes the value 0
pole: makes the value tend to∞ \infty z value

The region of convergence of the z-transform

For a given sequence x ( n ) x(n)x ( n ) , makingX ( z ) X(z)X ( z ) , immediately |X ( z ) X(z)X(z)|< ∞ \infty Allzz of ∞The set of z values ​​is calledX ( z ) X(z)X ( z ) coverage
∣ X ( z ) ∣ = ∑ n = − ∞ ∞ ∣ x ( n ) z − n ∣ = M < ∞ |X(z)|=\sum_{n=-{\infty} }^{\infty}|x(n)z^{-n}| = M < \inftyX(z)=n=x(n)zn=M<∞Note
: What you want should be∣ z ∣ |z|The range ofz

The region of convergence of a typical z-transform

  1. Finite sequence
    0 < ∣ z ∣ < ∞ 0 \ < |z| \ < \infty0 <z <

  2. Right sequence
    R x − < ∣ z ∣ < ∞ R_{x_-} \ < |z| \ < \inftyRx <z <

  3. Left sequence
    − ∞ < ∣ z ∣ < R x + -\infty \ <|z| \ < R_{x_+} <z <Rx+

  4. Bilateral sequence
    R x − < ∣ z ∣ < R x + R_{x_-} \ < |z| \ < R_{x_+}Rx <z <Rx+

z z Properties of the z- transform

  1. linear
  2. shift
    • Bilateral sequence
      L [ x ( n − m ) ] = z − m X ( z ) \mathscr{L}[x(nm)] = z^{-m}X(z)L[x(nm)]=zmX(z)
      L [ x ( n + m ) ] = z m X ( z ) \mathscr{L}[x(n+m)] = z^{m}X(z) L[x(n+m)]=zmX(z)
    • unilateral
  3. Scale transformability of z domain
    L [ x ( n ) ] = X ( z ) , R x − < ∣ z ∣ < R x + \mathscr{L}[x(n)] = X(z), \ \ R_ {x_-}<|z|<R_{x_+}L[x(n)]=X(z),  Rx<z<Rx+
    L [ a n x ( n ) ] = X ( z a ) ,    ∣ a ∣ R x − < ∣ z ∣ < ∣ a ∣ R x + \mathscr{L}[a^nx(n)]=X(\frac{z}{a}),\ \ |a|R_{x_-}<|z|<|a|R_{x+} L[an x(n)]=X(az),  aRx<z<aRx+
  4. Linear weighting of the sequence
    L [ nx ( n ) ] = − z ⋅ ddz X ( z ) \mathscr{L}[nx(n)]=-z\cdot \frac{d}{dz}X(z)L [ n x ( n )]=zdzdX ( z )
    5. Sequence conjugate
    L [ x ∗ ( n ) ] = X ∗ ( z ∗ ) \mathscr{L}[x^*(n)]=X^*(z^*)L[x(n)]=X(z)
  5. Sequence defolding
    L [ x ( − n ) ] = X ( 1 z ) \mathscr{L}[x(-n)]=X(\frac{1}{z})L[x(n)]=X(z1)
    L [ x ( − n − m ) ] = ( 1 z ) − m X ( 1 z ) = z m X ( 1 z ) \mathscr{L}[x(-n-m)]=(\frac{1}{z})^{-m}X(\frac{1}{z}) = z^mX(\frac{1}{z}) L[x(nm)]=(z1)mX(z1)=zmX(z1)
  6. initial value theorem

For causal sequences:
x ( 0 ) = limx → ∞ X ( z ) x(0)=lim_{x\to \infty}X(z)x(0)=limxX ( z )
8. Final value theorem
Condition:x ( n ) x(n)x ( n ) is a causal sequence, and the poles of X(z) are within the unit circle |z|=1 (up to z = 1 z=1on the unit circlez=1 available one floor)
x ( ∞ ) = limx → ∞ = limz → 1 [ ( z − 1 ) X ( z ) ] = R es [ X ( z ) ] z = 1 x(\infty) = lim_{ x{\to}{\infty}}=lim_{z\to 1}[(z-1)X(z)]=Res[X(z)]_{z=1}x()=limx=limz1[(z1)X(z)]=Res[X(z)]z=1
Otherwise the final value theorem cannot be used

Guess you like

Origin blog.csdn.net/m0_52910424/article/details/127651365