Advanced Mathematics Review Basics: Sequence Limits

insert image description here

Definition solve

Mainly ε − N \varepsilon - NeN language

如证 lim ⁡ n → ∞ q n = 0 \lim_{n\to\infty}q^n=0 limnqn=0 , whereqqq is a constant and∣ q ∣ < 1 |q|<1q<1

untie:

According to the definition, the starting hand is ∣ an − A ∣ < ε |a_n-A|<\varepsilonanA<e

Determine qn − 0 ∣ = ∣ qn ∣ < ε |q^n-0|=|q^n|<\varepsilonqn0∣=qn<ε , using the logarithm for power considerations

Denote ln ⁡ ∣ q ∣ < ln ⁡ ε n\ln|q|<\ln \varepsilonnlnq<lne

Because the left side is negative, take ε ∈ ( 0 , 1 ) \varepsilon \in (0,1)e(0,1 ) , such thatln ⁡ ε \ln \varepsilonlnε is also negative

ln > ln ⁡ ε ln ⁡ ∣ q ∣ n>\frac{\ln \varepsilon}{\ln |q| }n>lnqlne

N = [ ln ⁡ ε ln ⁡ ∣ q ∣ ] + 1 N=[\frac{\ln \valuepsilon}{\ln |q|}]+1N=[lnqlne]+1

Then when n > N n>Nn>N must haven > ln ⁡ ε ln ⁡ ∣ q ∣ n>\frac{\ln \varepsilon}{\ln |q|}n>lnqlne

∣ qn − 0 ∣ < ε |q^n-0|<\varepsilonqn0∣<ε ,iflim ⁡ n → ∞ qn = 0 \lim_{n\to\infty}q^n=0limnqn=0 certified

Properties of Convergent Sequences

  • (Uniqueness) The existence of a limit must be unique
  • (Boundedness) The sequence of limit existence must be bounded
  • (Number-guaranteed) sequence { an } \{a_n\}{ an} limita > 0 a > 0a>0(或 a < 0 a<0 a<0 ), then there is a positive integerNNN,当 n > N n>N n>N hasan > 0 a_n>0an>0(或 a n < 0 a_n<0 an<0

Unequal relationship

Inequality relations mainly rely on inequality (zooming)

Prove that if lim ⁡ n → ∞ \lim_{n\to \infty}limn, lim ⁡ n → ∞ ∣ an ∣ = ∣ A ∣ \lim_{n \to \infty}|a_n|=|A|limnan=A

untie:

由题意有∀ ε > 0 , ∃ N > 0 , n > N , 有 ∣ an − A ∣ < ε \forall \varepsilon > 0, \exist N>0,n>N,\text{有}|a_n -A|<\varepsilonε>0,N>0,n>N,there isanA<e

Inequality ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|-|b||\le|ab|∣∣ab∣∣ab get

∣ ∣ an ∣ − ∣ A ∣ ∣ ≤ ∣ an − A ∣ < ε ||a_n|-|A||\le|a_n-A|<\varepsilon∣∣anA∣∣anA<e

insert image description here

Sequence Convergence and Subsequence Convergence

young sequence { an } \{a_n\}{ an} converges then its sub-column{ an } \{a_n\}{ an} also converges, and we have:

lim ⁡ k → ∞ a k n = lim ⁡ n → ∞ a n \lim_{k \to \infty}a_{kn}=\lim_{n\to \infty}a_n klimakn=nliman

This can be said in reverse: if there is a sub-column { an } \{a_n\}{ an} diverge or the two sub-sequences converge but the convergence values ​​are different, then the original sequence diverges

In some cases, it is necessary to study the sub-sequences to form the whole parent sequence. If the sub-sequence is 2k, then there must be two: 2k and 2k+1. If it is 3k, there must be three: 3k, 3k+1, 3k+2


Prove that { n ( − 1 ) n } \{n^{(-1)^n}\}{ n(1)n }limit does not exist

untie:

see nnIn both cases where n is odd or even, the convergence limits for odd and even cases are different, so the original number sequence has no limit

other

I don't know what to title

lim ⁡ u → 1 uv = 1 ∞ e lim ⁡ v ln ⁡ u = ev ( u − 1 ) \lim_{u \to 1} u^v\mathop{ {=}}\limits^{ {1^ \ infty }}e^{\lim v \ln u}=e^{v(u-1)}u1limuv=1elimvlnu=ev(u1)

The premise of establishment is that the form of the formula is 1 ∞ 1^\infty1 , then obviouslyu → 1 u \to 1u1

The origin of this formula is mainly because ln ⁡ u = ln ⁡ ( 1 + u − 1 ) \ln u=\ln (1+u-1)lnu=ln(1+u1 ) , and atx → 0 x \to 0xWhen 0 , according to the equivalent infinitesimal,x ∼ ln ⁡ ( 1 + x ) x\sim \ln (1+x)xln(1+x ) . reasonu → 1 u \to 1u1 , henceu − 1 → 0 u-1\to 0u10 , the above substitution can be applied, andln ⁡ u = ln ⁡ ( 1 + u − 1 ) = x − 1 \ln u=\ln (1+u-1)=x-1lnu=ln(1+u1)=x1


Conclusion: When qqq isa constantand∣ q ∣ < 1 |q|<1q<1时, S = lim ⁡ n → ∞ S n = a 1 1 − q S=\lim_{n \to \infty}S_n=\frac{a_1}{1-q} S=limnSn=1qa1

Emphasis is constant, because if not, see the next question:

When q = 1 − 1 nq=1-\frac1nq=1n1When lim ⁡ n → ∞ qn \lim_{n \to \infty}q^nlimnqWhat is the limit of n ?

untie:

can find that n → ∞ n\to \inftyn meets1 ∞ 1^\infty1 of the form (see conclusion above)

lim ⁡ n → ∞ q n = lim ⁡ n → ∞ = e lim ⁡ n → ∞ n ( − 1 n ) = e − 1 \lim_{n \to \infty}q^n=\lim_{n \to \infty}=e^{\lim_{n \to \infty}n(-\frac1n)}=e^{-1} nlimqn=nlim=elimnn(n1)=e1

It is not equal to 0 at all


lim ⁡ n → ∞ a n = 0 ⇔ lim ⁡ n → ∞ ∣ a n ∣ = 0 \lim_{n \to \infty}a_n=0 \Leftrightarrow \lim_{n \to \infty}|a_n|=0 nliman=0nliman=0

In this case, to prove an → 0 a_n\to 0an0 can be transformed into proof∣ an ∣ → 0 |a_n|\to 0an0 , if you use the clamping theorem at this time, you already know0 ≤ ∣ an ∣ ≤ . . . 0 \le |a_n| \le...0an... , half of the proof is completed, just prove the right side again

The derivation relies on the following inequality:

∣ ∣ a n ∣ − A ∣ ||a_n|-A| ∣∣anA

On the Pinching Theorem

形式是yn ≤ xn ≤ zn y_n\le x_n \le z_nynxnzn

For two inequality signs, it doesn't matter if there is an equal


insert image description here

Recursive Prioritization Monotone Bounded Criterion

Set the number sequence { an } \{a_n\}{ an} satisfya1 = a ( a > 0 ), an + 1 = 1 2 ( an + 2 an ) a_1=a(a>0),a_{n+1}=\frac12(a_n+\frac{2}{ a_n})a1=a(a>0),an+1=21(an+an2) , prove the existence of the limit and evaluate

untie:

The proof has a lower bound:

Using the inequality a + b > 2 ab a+b>2\sqrt{ab}a+b>2ab Substitute the right side of the recursive formula to get an + 1 = 1 2 ( an + 2 an ) = 2 a_{n+1}=\frac12(a_n+\frac{2}{a_n})=\sqrt2an+1=21(an+an2)=2 , which is the lower bound

Note that the premise of the inequality is a , b > 0 a,b>0a,b>0 , and according toa 1 = a > 0 a_1=a>0a1=a>0 infersan > 0 a_n>0an>0 , for the premise of the inequality

Certificate monotone:

a n + 1 − a n = 1 2 ( a n + 2 a n ) − a n = 2 − a n 2 2 a n ≤ 0 a_{n+1}-a_n=\frac12(a_n+\frac{2}{a_n})-a_n=\frac{2-a_n^2}{2a_n} \le 0 an+1an=21(an+an2)an=2a _n2an20 , so monotonically decreasing

Finally solve:

Just bring in A to solve the deduction formula: A = 1 2 ( A + 2 A ) A=\frac12(A+\frac2A)A=21(A+A2) , combined with the guaranteed numberA = 2 A=\sqrt2A=2

unbounded but not infinite

insert image description here

Guess you like

Origin blog.csdn.net/qq_39377889/article/details/128516081