분류 알고리즘 --K 이웃, 순진 베이 즈, 의사 결정 나무, 임의의 숲에

from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
# li = load_iris()

# print("获取特征值")
# print(li.data)
# print("目标值")
# print(li.target)
# print(li.DESCR)

# 注意返回值, 训练集 train  x_train, y_train        测试集  test   x_test, y_test
# x_train, x_test, y_train, y_test = train_test_split(li.data, li.target, test_size=0.25)
#
# print("训练集特征值和目标值:", x_train, y_train)
# print("测试集特征值和目标值:", x_test, y_test)

# news = fetch_20newsgroups(subset='all')
#
# print(news.data)
# print(news.target)
#
# lb = load_boston()
#
# print("获取特征值")
# print(lb.data)
# print("目标值")
# print(lb.target)
# print(lb.DESCR)

K- 알고리즘 가까운 - 이웃 고용 측정은 특성 값 사이의 서로 다른 거리를 분류하기

  • 장점 : 높은 정확성, 데이터 입력이 없다고 가정 이상치에 영향을받지 않는다
  • 단점 : 높은 계산 복잡성, 높은 복잡성과 공간
    사용 데이터 범위 : 숫자와 공칭 입력

def knncls():
    """
    K-近邻预测用户签到位置
    :return:None
    """
    # 读取数据
    data = pd.read_csv("train.csv")

    # print(data.head(10))

    # 处理数据
    # 1、原数据太大,缩小数据,查询数据筛选
    data = data.query("x > 1.0 &  x < 1.25 & y > 2.5 & y < 2.75")

    # 处理时间的数据
    time_value = pd.to_datetime(data['time'], unit='s')

    print(time_value)

    # 把日期格式转换成 字典格式
    time_value = pd.DatetimeIndex(time_value)

    # 构造一些特征
    data['day'] = time_value.day
    data['hour'] = time_value.hour
    data['weekday'] = time_value.weekday

    # 把时间戳特征删除
    data = data.drop(['time'], axis=1)

    print(data)

    # 把签到数量少于n个目标位置删除
    place_count = data.groupby('place_id').count()

    tf = place_count[place_count.row_id > 3].reset_index()

    data = data[data['place_id'].isin(tf.place_id)]

    # 取出数据当中的特征值和目标值
    y = data['place_id']

    x = data.drop(['place_id'], axis=1)

    # 进行数据的分割训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 特征工程(标准化)
    std = StandardScaler()

    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)

    x_test = std.transform(x_test)

    # 进行算法流程 # 超参数
    knn = KNeighborsClassifier()

    # # fit, predict,score
    # knn.fit(x_train, y_train)
    #
    # # 得出预测结果
    # y_predict = knn.predict(x_test)
    #
    # print("预测的目标签到位置为:", y_predict)
    #
    # # 得出准确率
    # print("预测的准确率:", knn.score(x_test, y_test))

    # 构造一些参数的值进行搜索
    param = {"n_neighbors": [3, 5, 10]}

    # 进行网格搜索
    gc = GridSearchCV(knn, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    # 预测准确率
    print("在测试集上准确率:", gc.score(x_test, y_test))

    print("在交叉验证当中最好的结果:", gc.best_score_)

    print("选择最好的模型是:", gc.best_estimator_)

    print("每个超参数每次交叉验证的结果:", gc.cv_results_)

    return None

if __name__ == "__main__":
    knncls()
def naviebayes():
    """
    朴素贝叶斯进行文本分类
    :return: None
    """
    news = fetch_20newsgroups(subset='all')

    # 进行数据分割
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)

    # 对数据集进行特征抽取
    tf = TfidfVectorizer()

    # 以训练集当中的词的列表进行每篇文章重要性统计['a','b','c','d']
    x_train = tf.fit_transform(x_train)

    print(tf.get_feature_names())

    x_test = tf.transform(x_test)

    # 进行朴素贝叶斯算法的预测
    mlt = MultinomialNB(alpha=1.0)

    print(x_train.toarray())

    mlt.fit(x_train, y_train)

    y_predict = mlt.predict(x_test)

    print("预测的文章类别为:", y_predict)

    # 得出准确率
    print("准确率为:", mlt.score(x_test, y_test))

    print("每个类别的精确率和召回率:", classification_report(y_test, y_predict, target_names=news.target_names))

    return None

if __name__ == "__main__":
    naviebayes()

의사 결정 나무는 기본적인 분류 방법도 반환하는 데 사용할 수 있습니다. 의사 결정 트리 모델은 트리 구조였다. 기능을 분류하는 프로세스를 기반으로 인스턴스를 나타내는 분류 문제에서는, IF-then 규칙 세트를 고려 될 수있다. 의사 결정 트리의 구조에서, 각각의 경로 또는 인스턴스는 규칙이 적용됩니다. 기능 선택, 의사 결정 트리 의사 결정 트리 가지 치기를 생성 : 의사 결정 나무는 일반적으로 세 단계를 포함

  • 장점 : 계산 복잡도가 높은 쉽게 이해 출력되지 누락 둔감의 중간 값은, 프로세싱 로직은 비선형 회귀 특징 데이터를 해결할 수없는
  • 단점 : 일치 문제를 통해 발생할 수있는
    해당 데이터 유형 : 숫자와 공칭 입력

랜덤 포레스트는 분류기의 복수를 포함하는 결정 트리이며, 그 출력은 일 수있는 개별 트리 출력 종류의 모든 종류의 수이다. 여러 개의 독립적 인 분류 모델까지 훈련 집합의 같은 번호를 사용하고 투표의 방법으로, 의사 결정 대다수의 원리는 최종 분류를 만들 수 있습니다. 당신이 나무의 네 가지에 대한 결과가 True 다섯 나무, 훈련 예를 들어, 숫자의 결과가 거짓이고, 그 최종 결과는 true가됩니다

def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    # 获取数据
    titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 处理数据,找出特征值和目标值
    x = titan[['pclass', 'age', 'sex']]

    y = titan['survived']

#     print(x)
    # 缺失值处理
    x['age'].fillna(x['age'].mean(), inplace=True)

    # 分割数据集到训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 进行处理(特征工程)特征-》类别-》one_hot编码
    dict = DictVectorizer(sparse=False)

    x_train = dict.fit_transform(x_train.to_dict(orient="records"))

    print(dict.get_feature_names())

    x_test = dict.transform(x_test.to_dict(orient="records"))

    # print(x_train)
    # 用决策树进行预测
    # dec = DecisionTreeClassifier()
    #
    # dec.fit(x_train, y_train)
    #
    # # 预测准确率
    # print("预测的准确率:", dec.score(x_test, y_test))
    #
    # # 导出决策树的结构
    # export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])

    # 随机森林进行预测 (超参数调优)
    rf = RandomForestClassifier()

    param = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}

    # 网格搜索与交叉验证
    gc = GridSearchCV(rf, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    print("准确率:", gc.score(x_test, y_test))

    print("查看选择的参数模型:", gc.best_params_)

    return None


if __name__ == "__main__":
    decision()
['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']
准确率: 0.8389057750759878
查看选择的参数模型: {'max_depth': 5, 'n_estimators': 120}

추천

출처www.cnblogs.com/ohou/p/11946251.html