Markdown 数学公式输入

\(x^{y^z} = (1+e^x)^{-2xy^w}\)

$x^{y^z} = (1+e^x)^{-2xy^w}$

\(f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon \{3, 4, 5\}\)

$f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon \{3, 4, 5\}$

\((\frac {x} {y})^2 , \left(\frac {x} {y} \right)^2\)

$(\frac {x} {y})^2 , \left(\frac {x} {y} \right)^2$

\(\left. \frac{du}{dx} \right| _{x=0}\)

$\left. \frac{du}{dx} \right| _{x=0}$

\(\frac{1}{2x+1} , {{1} \over {2x+1}}\)

$\frac{1}{2x+1} , {{1} \over {2x+1}}$

\(\sqrt[3]{9}, \sqrt{16}\)

$\sqrt[3]{9}, \sqrt{16}$

\(f(x_1,x_2,\ldots,x_n) = x_1^2+x_2^2+\cdots+x_n^2\)

$f(x_1,x_2,\ldots,x_n) = x_1^2+x_2^2+\cdots+x_n^2$

\(\vec a \cdot \vec b = 0\)

$\vec a \cdot \vec b = 0$

\(\int_0^1x^2dx\)

$\int_0^1x^2dx$

\(\lim_{n\rightarrow+\infty}\frac{1}{n(n+1)}\)

$\lim_{n\rightarrow+\infty}\frac{1}{n(n+1)}$

\(\sum_1^n\frac{1}{x^2}, \prod_{i=0}^n{1 \over {x^2}}\)

$\sum_1^n\frac{1}{x^2}, \prod_{i=0}^n{1 \over {x^2}}$

\(\alpha \beta \gamma \Gamma \delta \Delta \epsilon \varepsilon \zeta \eta \theta \Theta \vartheta \iota \kappa \lambda \Lambda \mu \nu \xi \Xi \pi \Pi \varpi \rho \varrho \sigma \Sigma \varsigma \tau \upsilon \Upsilon \phi \Phi \varphi \chi \psi \Psi \Omega \omega\)

$\alpha \beta \gamma \Gamma \delta \Delta \epsilon \varepsilon \zeta \eta \theta \Theta \vartheta \iota \kappa \lambda \Lambda \mu \nu \xi \Xi \pi \Pi \varpi \rho \varrho \sigma \Sigma \varsigma \tau \upsilon \Upsilon \phi \Phi \varphi \chi \psi \Psi \Omega \omega$
显示 命令 显示 命令
\(\alpha\) \alpha \(\beta\) \beta
\(\gamma\) \gamma \(\delta\) \delta
\(\epsilon\) \epsilon \(\zeta\) \zeta
\(\eta\) \eta \(\theta\) \theta
\(\iota\) \iota \(\kappa\) \kappa
\(\lambda\) \lambda \(\mu\) \mu
\(\nu\) \nu \(\xi\) \xi
\(\pi\) \pi \(\rho\) \rho
\(\sigma\) \sigma \(\tau\) \tau
\(\upsilon\) \upsilon \(\phi\) \phi
\(\chi\) \chi \(\psi\) \psi
\(\omega\) \omega

\(\# \$ \%\&\_\{\}\)

$\# \$ \%\&\_\{\}$

\(\pm \times \div \mid\)

$\pm \times \div \mid$

\(\cdot \circ \ast \bigodot \bigotimes \leq \geq \neq \approx \equiv \sum \prod \coprod\)

$\cdot \circ \ast \bigodot \bigotimes \leq \geq \neq \approx \equiv \sum \prod \coprod$

\(\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup\)

$\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup$

\(\log \lg \ln\)

$\log \lg \ln$

\(\bot \angle 30^\circ \sin \cos \tan \cot \sec \csc\)

$\bot \angle 30^\circ \sin \cos \tan \cot \sec \csc$

\(y{\prime}x \int \iint \iiint \oint \lim \infty \nabla\)

$y{\prime}x \int \iint \iiint \oint \lim \infty \nabla$

\(\because \therefore \forall \exists\)

$\because \therefore \forall \exists$

\(\uparrow \downarrow \leftarrow \rightarrow \Uparrow \Downarrow \Leftarrow \Rightarrow \longleftarrow \longrightarrow \Longleftarrow \Longrightarrow\)

$\uparrow \downarrow \leftarrow \rightarrow \Uparrow \Downarrow \Leftarrow \Rightarrow \longleftarrow \longrightarrow \Longleftarrow \Longrightarrow$

\(\overline{a+b+c+d} \underline{a+b+c+d} \overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} \hat{y} \check{y} \breve{y}\)

$\overline{a+b+c+d}
\underline{a+b+c+d}
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}
\hat{y} \check{y} \breve{y}$

https://www.jianshu.com/p/a0aa94ef8ab2
https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
https://blog.csdn.net/xingxinmanong/article/details/78528791

猜你喜欢

转载自www.cnblogs.com/kingBook/p/12942750.html