计算机网络常知识点

OSI,TCP/IP,五层协议的体系结构,以及各层协议

OSI分层 (7层):物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。

TCP/IP分层(4层):网络接口层、 网际层、运输层、 应用层。

五层协议     (5层):物理层、数据链路层、网络层、运输层、 应用层。

每一层的协议如下

物理层:RJ45、CLOCK、IEEE802.3    (中继器,集线器,网关)

数据链路:PPP、FR、HDLC、VLAN、MAC  (网桥,交换机)、循环冗余检验、CSMA/CD(多点接入、载波监听、碰撞检测)协议

网络层:IP、ICMP、ARP、RARP、OSPF、IPX、RIP、IGRP、 (路由器)

传输层:TCPUDP、SPX

会话层:NFS、SQL、NETBIOS、RPC

表示层:JPEG、MPEG、ASII

应用层:FTP、DNS、Telnet、SMTP、HTTP、WWW、NFS

每一层的作用如下

物理层:通过媒介传输比特,确定机械及电气规范(比特Bit)

数据链路层:将比特组装成和点到点的传递(帧Frame)。点对点的协议PPP。三个基本问题:封装成帧、透明传输、差错检测。

网络层:负责数据包从源到宿的传递和网际互连(包PackeT)

传输层:提供端到端的可靠报文传递和错误恢复(段Segment)

会话层:建立、管理和终止会话(会话协议数据单元SPDU)

表示层:对数据进行翻译、加密和压缩(表示协议数据单元PPDU)

应用层:允许访问OSI环境的手段(应用协议数据单元APDU)

IP地址的分类

A类地址:以0开头, 第一个字节范围:0~127(1.0.0.0 - 126.255.255.255);

B类地址:以10开头,    第一个字节范围:128~191(128.0.0.0 - 191.255.255.255);

C类地址:以110开头,  第一个字节范围:192~223(192.0.0.0 - 223.255.255.255);

10.0.0.0—10.255.255.255, 172.16.0.0—172.31.255.255, 192.168.0.0—192.168.255.255。(Internet上保留地址用于内部)

IP地址与子网掩码相与得到主机号(子网掩码的作用)

ARP是地址解析协议,简单语言解释一下工作原理。

1:首先,每个主机都会在自己的ARP缓冲区中建立一个ARP列表,以表示IP地址和MAC地址之间的对应关系。

2:当源主机要发送数据时,首先检查ARP列表中是否有对应IP地址的目的主机的MAC地址,如果有,则直接发送数据,如果没有,就向本网段的所有主机发送ARP数据包,该数据包包括的内容有:源主机 IP地址,源主机MAC地址,目的主机的IP 地址

3:当本网络的所有主机收到该ARP数据包时,首先检查数据包中的IP地址是否是自己的IP地址,如果不是,则忽略该数据包,如果是,则首先从数据包中取出源主机的IP和MAC地址写入到ARP列表中,如果已经存在,则覆盖,然后将自己的MAC地址写入ARP响应包中,告诉源主机自己是它想要找的MAC地址。

4:源主机收到ARP响应包后。将目的主机的IP和MAC地址写入ARP列表,并利用此信息发送数据。如果源主机一直没有收到ARP响应数据包,表示ARP查询失败。

广播发送ARP请求,单播发送ARP响应。

各种协议

ICMP协议: 因特网控制报文协议。它是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。

TFTP协议: 是TCP/IP协议族中的一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂、开销不大的文件传输服务。

HTTP协议: 超文本传输协议,是一个属于应用层的面向对象的协议,由于其简捷、快速的方式,适用于分布式超媒体信息系统。

DHCP协议: 动态主机配置协议,是一种让系统得以连接到网络上,并获取所需要的配置参数手段。

NAT协议:网络地址转换属接入广域网(WAN)技术,是一种将私有(保留)地址转化为合法IP地址的转换技术,

DHCP协议:一个局域网的网络协议,使用UDP协议工作,用途:给内部网络或网络服务供应商自动分配IP地址,给用户或者内部网络管理员作为对所有计算机作中央管理的手段。

描述:RARP

RARP是逆地址解析协议,作用是完成硬件地址到IP地址的映射,主要用于无盘工作站,因为给无盘工作站配置的IP地址不能保存。工作流程:在网络中配置一台RARP服务器,里面保存着IP地址和MAC地址的映射关系,当无盘工作站启动后,就封装一个RARP数据包,里面有其MAC地址,然后广播到网络上去,当服务器收到请求包后,就查找对应的MAC地址的IP地址装入响应报文中发回给请求者。因为需要广播请求报文,因此RARP只能用于具有广播能力的网络。

 ICMP(网际控制报文协议):有两种:差错控制报文  询问报文

ICMP 是 Internet Control Message Protocol ,因特网控制报文协议。它是 TCP/IP 协议族的一个子协议,用于在 IP 主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由器是否可用等网络本身的消息。这些控制消息虽然并不传输用户数据,但是对于用户数据的传递起着重要的作用。

    PING就是应用层直接调用运输层的例子,没有经过TCP 或者UDP.

TCP的可靠性如何保证:

在TCP的连接中,数据流必须以正确的顺序送达对方。TCP的可靠性是通过顺序编号和确认(ACK)来实现的。TCP在开始传送一个段时,为准备重传而首先将该段插入到发送队列之中,同时启动时钟。其后,如果收到了接受端对该段的ACK信息,就将该段从队列中删去。如果在时钟规定的时间内,ACK未返回,那么就从发送队列中再次送出这个段。TCP在协议中就对数据可靠传输做了保障,握手与断开都需要通讯双方确认,数据传输也需要双方确认成功,在协议中还规定了:分包、重组、重传等规则;而UDP主要是面向不可靠连接的,不能保证数据正确到达目的地。     


 

TCP三次握手和四次挥手的全过程

三次握手:

第一次握手:客户端发送syn包(syn=x)到服务器,并进入SYN_SEND状态,等待服务器确认;

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(syn=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。

握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。理想状态下,TCP连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP 连接都将被一直保持下去。

四次握手

与建立连接的“三次握手”类似,断开一个TCP连接则需要“四次握手”。

第一次挥手:主动关闭方发送一个FIN,用来关闭主动方到被动关闭方的数据传送,也就是主动关闭方告诉被动关闭方:我已经不 会再给你发数据了(当然,在fin包之前发送出去的数据,如果没有收到对应的ack确认报文,主动关闭方依然会重发这些数据),但是,此时主动关闭方还可 以接受数据。

第二次挥手:被动关闭方收到FIN包后,发送一个ACK给对方,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号)。
第三次挥手:被动关闭方发送一个FIN,用来关闭被动关闭方到主动关闭方的数据传送,也就是告诉主动关闭方,我的数据也发送完了,不会再给你发数据了。
第四次挥手:主动关闭方收到FIN后,发送一个ACK给被动关闭方,确认序号为收到序号+1,至此,完成四次挥手。


 

在浏览器中输入www.baidu.com后执行的全部过程

1、客户端浏览器通过DNS解析到www.baidu.com的IP地址220.181.27.48,通过这个IP地址找到客户端到服务器的路径。客户端浏览器发起一个HTTP会话到220.161.27.48,然后通过TCP进行封装数据包,输入到网络层。

2、在客户端的传输层,把HTTP会话请求分成报文段,添加源和目的端口,如服务器使用80端口监听客户端的请求,客户端由系统随机选择一个端口如5000,与服务器进行交换,服务器把相应的请求返回给客户端的5000端口。然后使用IP层的IP地址查找目的端。

3、客户端的网络层不用关系应用层或者传输层的东西,主要做的是通过查找路由表确定如何到达服务器,期间可能经过多个路由器,这些都是由路由器来完成的工作,我不作过多的描述,无非就是通过查找路由表决定通过那个路径到达服务器。

4、客户端的链路层,包通过链路层发送到路由器,通过邻居协议查找给定IP地址的MAC地址,然后发送ARP请求查找目的地址,如果得到回应后就可以使用ARP的请求应答交换的IP数据包现在就可以传输了,然后发送IP数据包到达服务器的地址。

TCP和UDP的区别?

TCP提供面向连接的、可靠的数据流传输,而UDP提供的是非面向连接的、不可靠的数据流传输。

TCP传输单位称为TCP报文段,UDP传输单位称为用户数据报。

TCP注重数据安全性,UDP数据传输快,因为不需要连接等待,少了许多操作,但是其安全性却一般。

TCP对应的协议和UDP对应的协议

TCP对应的协议:

(1) FTP:定义了文件传输协议,使用21端口。

(2) Telnet:一种用于远程登陆的端口,使用23端口,用户可以以自己的身份远程连接到计算机上,可提供基于DOS模式下的通信服务。

(3) SMTP:邮件传送协议,用于发送邮件。服务器开放的是25号端口。

(4) POP3:它是和SMTP对应,POP3用于接收邮件。POP3协议所用的是110端口。

(5)HTTP:是从Web服务器传输超文本到本地浏览器的传送协议。

UDP对应的协议:

(1) DNS:用于域名解析服务,将域名地址转换为IP地址。DNS用的是53号端口。

(2) SNMP:简单网络管理协议,使用161号端口,是用来管理网络设备的。由于网络设备很多,无连接的服务就体现出其优势。

(3) TFTP(Trival File Tran敏感词er Protocal),简单文件传输协议,该协议在熟知端口69上使用UDP服务。

DNS域名系统,简单描述其工作原理。

当DNS客户机需要在程序中使用名称时,它会查询DNS服务器来解析该名称。客户机发送的每条查询信息包括三条信息:包括:指定的DNS域名,指定的查询类型,DNS域名的指定类别。基于UDP服务,端口53. 该应用一般不直接为用户使用,而是为其他应用服务,如HTTP,SMTP等在其中需要完成主机名到IP地址的转换。

面向连接和非面向连接的服务的特点是什么?

面向连接的服务,通信双方在进行通信之前,要先在双方建立起一个完整的可以彼此沟通的通道,在通信过程中,整个连接的情况一直可以被实时地监控和管理。

非面向连接的服务,不需要预先建立一个联络两个通信节点的连接,需要通信的时候,发送节点就可以往网络上发送信息,让信息自主地在网络上去传,一般在传输的过程中不再加以监控。

TCP的三次握手过程?为什么会采用三次握手,若采用二次握手可以吗?

答:建立连接的过程是利用客户服务器模式,假设主机A为客户端,主机B为服务器端。

(1)TCP的三次握手过程:主机A向B发送连接请求;主机B对收到的主机A的报文段进行确认;主机A再次对主机B的确认进行确认。

(2)采用三次握手是为了防止失效的连接请求报文段突然又传送到主机B,因而产生错误。失效的连接请求报文段是指:主机A发出的连接请求没有收到主机B的确认,于是经过一段时间后,主机A又重新向主机B发送连接请求,且建立成功,顺序完成数据传输。考虑这样一种特殊情况,主机A第一次发送的连接请求并没有丢失,而是因为网络节点导致延迟达到主机B,主机B以为是主机A又发起的新连接,于是主机B同意连接,并向主机A发回确认,但是此时主机A根本不会理会,主机B就一直在等待主机A发送数据,导致主机B的资源浪费。

(3)采用两次握手不行,原因就是上面说的实效的连接请求的特殊情况。

 拥塞控制的几种方法

慢开始、拥塞避免、快重传。

一般原理:发生拥塞控制的原因:资源(带宽、交换节点的缓存、处理机)的需求 > 可用资源。作用:拥塞控制就是为了防止过多的数据注入到网络中,这样可以使网络中的路由器或者链路不至于过载。拥塞控制要做的都有一个前提:就是网络能够承受现有的网络负荷。对比流量控制:拥塞控制是一个全局的过程,涉及到所有的主机、路由器、以及降低网络相关的所有因素。流量控制往往指点对点通信量的控制。是端对端的问题。

    拥塞窗口:发送方为一个动态变化的窗口叫做拥塞窗口,拥塞窗口的大小取决于网络的拥塞程度。发送方让自己的发送窗口=拥塞窗口,但是发送窗口不是一直等于拥塞窗口的,在网络情况好的时候,拥塞窗口不断的增加,发送方的窗口自然也随着增加,但是接受方的接受能力有限,在发送方的窗口达到某个大小时就不在发生变化了。

    发送方如果知道网络拥塞了呢?发送方发送一些报文段时,如果发送方没有在时间间隔内收到接收方的确认报文段,则就可以人为网络出现了拥塞。

    慢启动算法的思路:主机开发发送数据报时,如果立即将大量的数据注入到网络中,可能会出现网络的拥塞。慢启动算法就是在主机刚开始发送数据报的时候先探测一下网络的状况,如果网络状况良好,发送方每发送一次文段都能正确的接受确认报文段。那么就从小到大的增加拥塞窗口的大小,即增加发送窗口的大小。

    例子:开始发送方先设置cwnd(拥塞窗口)=1,发送第一个报文段M1,接收方接收到M1后,发送方接收到接收方的确认后,把cwnd增加到2,接着发送方发送M2、M3,发送方接收到接收方发送的确认后cwnd增加到4,慢启动算法每经过一个传输轮次(认为发送方都成功接收接收方的确认),拥塞窗口cwnd就加倍。

    

    拥塞避免:为了防止cwnd增加过快而导致网络拥塞,所以需要设置一个慢开始门限ssthresh状态变量(我也不知道这个到底是什么,就认为他是一个拥塞控制的标识),它的用法:

                   1. 当cwnd < ssthresh,使用慢启动算法,

                   2. 当cwnd > ssthresh,使用拥塞控制算法,停用慢启动算法。

                   3. 当cwnd = ssthresh,这两个算法都可以。

   拥塞避免的思路:是让cwnd缓慢的增加而不是加倍的增长,每经历过一次往返时间就使cwnd增加1,而不是加倍,这样使cwnd缓慢的增长,比慢启动要慢的多。

    无论是慢启动算法还是拥塞避免算法,只要判断网络出现拥塞,就要把慢启动开始门限(ssthresh)设置为设置为发送窗口的一半(>=2),cwnd(拥塞窗口)设置为1,然后在使用慢启动算法,这样做的目的能迅速的减少主机向网络中传输数据,使发生拥塞的路由器能够把队列中堆积的分组处理完毕。拥塞窗口是按照线性的规律增长,比慢启动算法拥塞窗口增长块的多。

  实例:1.TCP连接进行初始化的时候,cwnd=1,ssthresh=16。

             2.在慢启动算法开始时,cwnd的初始值是1,每次发送方收到一个ACK拥塞窗口就增加1,当ssthresh =cwnd时,就启动拥塞控制算法,拥塞窗口按照规律增长,

             3.当cwnd=24时,网络出现超时,发送方收不到确认ACK,此时设置ssthresh=12,(二分之一cwnd),设置cwnd=1,然后开始慢启动算法,当cwnd=ssthresh=12,慢启动算法变为拥塞控制算法,cwnd按照线性的速度进行增长。 

AIMD(加法增大乘法减小)

          1. 乘法减小:无论在慢启动阶段还是在拥塞控制阶段,只要网络出现超时,就是将cwnd置为1,ssthresh置为cwnd的一半,然后开始执行慢启动算法(cwnd<ssthresh)。

         2. 加法增大:当网络频发出现超时情况时,ssthresh就下降的很快,为了减少注入到网络中的分组数,而加法增大是指执行拥塞避免算法后,是拥塞窗口缓慢的增大,以防止网络过早出现拥塞。

       这两个结合起来就是AIMD算法,是使用最广泛的算法。拥塞避免算法不能够完全的避免网络拥塞,通过控制拥塞窗口的大小只能使网络不易出现拥塞。

   

      快重传:

      快重传算法要求首先接收方收到一个失序的报文段后就立刻发出重复确认,而不要等待自己发送数据时才进行捎带确认。接收方成功的接受了发送方发送来的M1、M2并且分别给发送了ACK,现在接收方没有收到M3,而接收到了M4,显然接收方不能确认M4,因为M4是失序的报文段。如果根据可靠性传输原理接收方什么都不做,但是按照快速重传算法,在收到M4、M5等报文段的时候,不断重复的向发送方发送M2的ACK,如果接收方一连收到三个重复的ACK,那么发送方不必等待重传计时器到期,由于发送方尽早重传未被确认的报文段。

 快恢复:

       1. 当发送发连续接收到三个确认时,就执行乘法减小算法,把慢启动开始门限(ssthresh)减半,但是接下来并不执行慢开始算法。

       2. 此时不执行慢启动算法,而是把cwnd设置为ssthresh的一半, 然后执行拥塞避免算法,使拥塞窗口缓慢增大。

 Cookie和Session的区别和联系:

二者的定义:

当你在浏览网站的时候,WEB 服务器会先送一小小资料放在你的计算机上,Cookie 会帮你在网站上所打的文字或是一些选择,都纪录下来。当下次你再光临同一个网站,WEB 服务器会先看看有没有它上次留下的 Cookie 资料,有的话,就会依据 Cookie里的内容来判断使用者,送出特定的网页内容给你。 Cookie 的使用很普遍,许多有提供个人化服务的网站,都是利用 Cookie来辨认使用者,以方便送出使用者量身定做的内容,像是 Web 接口的免费 email 网站,都要用到 Cookie。


具体来说cookie机制采用的是在客户端保持状态的方案,而session机制采用的是在服务器端保持状态的方案。同时我们也看到,由于采用服务器端保持状态的方案在客户端也需要保存一个标识,所以session机制可能需要借助于cookie机制来达到保存标识的目的,但实际上它还有其他选择。cookie机制。正统的cookie分发是通过扩展HTTP协议来实现的,服务器通过在HTTP的响应头中加上一行特殊的指示以提示浏览器按照指示生成相应的cookie。然而纯粹的客户端脚本如JavaScript或者VBScript也可以生成cookie。而cookie的使用是由浏览器按照一定的原则在后台自动发送给服务器的。浏览器检查所有存储的cookie,如果某个cookie所声明的作用范围大于等于将要请求的资源所在的位置,则把该cookie附在请求资源的HTTP请求头上发送给服务器。 

cookie的内容主要包括:名字,值,过期时间,路径和域。路径与域一起构成cookie的作用范围。若不设置过期时间,则表示这个cookie的生命期为浏览器会话期间,关闭浏览器窗口,cookie就消失。这种生命期为浏览器会话期的cookie被称为会话cookie。会话cookie一般不存储在硬盘上而是保存在内存里,当然这种行为并不是规范规定的。若设置了过期时间,浏览器就会把cookie保存到硬盘上,关闭后再次打开浏览器,这些cookie仍然有效直到超过设定的过期时间。存储在硬盘上的cookie可以在不同的浏览器进程间共享,比如两个IE窗口。而对于保存在内存里的cookie,不同的浏览器有不同的处理方式

session机制。session机制是一种服务器端的机制,服务器使用一种类似于散列表的结构(也可能就是使用散列表)来保存信息。

cookie 和session 的区别:

1、cookie数据存放在客户的浏览器上,session数据放在服务器上。

2、cookie不是很安全,别人可以分析存放在本地的COOKIE并进行COOKIE欺骗
   考虑到安全应当使用session。

3、session会在一定时间内保存在服务器上。当访问增多,会比较占用你服务器的性能
   考虑到减轻服务器性能方面,应当使用COOKIE。

4、单个cookie保存的数据不能超过4K,很多浏览器都限制一个站点最多保存20个cookie。

5、所以个人建议:
   将登陆信息等重要信息存放为SESSION
   其他信息如果需要保留,可以放在COOKIE中

猜你喜欢

转载自blog.csdn.net/qq_42618969/article/details/106409425