GMP调度11大场景全解析

在转载的基础上做补充而得

(1) 场景 1

P 拥有 G1,M1 获取 P 后开始运行 G1,G1 使用 go func() 创建了 G2,为了局部性 G2 优先加入到 P1 的本地队列。
在这里插入图片描述

(2) 场景 2

G1 运行完成后 (函数:goexit),M 上运行的 goroutine 切换为 G0,G0 负责调度时协程的切换(函数:schedule)。从 P 的本地队列取 G2,从 G0 切换到 G2,并开始运行 G2 (函数:execute)。实现了线程 M1 的复用。
在这里插入图片描述
每个M都有一个G0,负责调度绑定的P本地队列中的G

(3) 场景 3

假设每个 P 的本地队列只能存 3 个 G。G2 要创建了 6 个 G,前 3 个 G(G3, G4, G5)已经加入 p1 的本地队列,p1 本地队列满了。
在这里插入图片描述

(4) 场景 4

G2 在创建 G7 的时候,发现 P1 的本地队列已满,需要执行负载均衡 (把 P1 中本地队列中前一半的 G,还有新创建 G 转移到全局队列)

(实现中并不一定是新的 G,如果 G 是 G2 之后就执行的,会被保存在本地队列,利用某个老的 G 替换新 G 加入全局队列)

在这里插入图片描述
这些 G 被转移到全局队列时,会被打乱顺序。所以 G3,G7 ,G4,被转移到全局队列。

(5) 场景 5

G2 创建 G8 时,P1 的本地队列未满,所以 G8 会被加入到 P1 的本地队列。
在这里插入图片描述
G8 加入到 P1 点本地队列的原因还是因为 P1 此时在与 M1 绑定,而 G2 此时是 M1 在执行。所以 G2 创建的新的 G 会优先放置到自己的 M 绑定的 P 上。

(6) 场景 6

规定:在创建 G 时,运行的 G 会尝试唤醒其他空闲的 P 和 M 组合(必须是在有空闲P的前提下)去执行。
在这里插入图片描述
假定 G2 唤醒了 M2,M2 绑定了 P2,并运行 G0,但 P2 本地队列没有 G,M2 此时为自旋线程(没有 G 但为运行状态的线程,不断寻找 G)。

自旋线程:
M和P是绑定的状态,但P的本地队列为空,在运行G0。这时,M称为自旋线程
一般来说,自旋线程状态是短暂的一个过度状态,因为会很快从全局队列中获取G,或者全局队列为空时,触发work stealing机制。当任何地方都没有了G,也就意味着程序结束,组合绑定解除,P和M被销毁

当P的本地队列有G时,运行的G0被调度执行别的G时,自旋状态解除,称为非自旋状态

(7) 场景 7

M2 尝试从全局队列 (简称 “GQ”) 取一批 G 放到 P2 的本地队列(函数:findrunnable())。M2 从全局队列取的 G 数量符合下面的公式:

n = min(len(GQ)/GOMAXPROCS + 1, len(GQ/2))

至少从全局队列取 1 个 g,但每次不要从全局队列移动太多的 g 到 p 本地队列,给其他 p 留点。这是从全局队列到 P 本地队列的负载均衡。
在这里插入图片描述
假定我们场景中一共有 4 个 P(GOMAXPROCS 设置为 4,那么我们允许最多就能用 4 个 P 来供 M 使用)。所以 M2 只从能从全局队列取 1 个 G(即 G3)移动 P2 本地队列,然后完成从 G0 到 G3 的切换,运行 G3。

(8) 场景 8

假设 G2 一直在 M1 上运行,经过 2 轮后,M2 已经把 G7、G4 从全局队列获取到了 P2 的本地队列并完成运行,全局队列和 P2 的本地队列都空了,如场景 8 图的左半部分。
在这里插入图片描述
全局队列已经没有 G,那 m 就要执行 work stealing (偷取):从其他有 G 的 P 哪里偷取一半 G 过来,放到自己的 P 本地队列。P2 从 P1 的本地队列尾部取一半的 G,本例中一半则只有 1 个 G8,放到 P2 的本地队列并执行。

(9) 场景 9

P1 本地队列 G5、G6 已经被其他 M 偷走并运行完成,当前 M1 和 M2 分别在运行 G2 和 G8,M3 和 M4 没有 goroutine 可以运行,M3 和 M4 处于自旋状态,它们不断寻找 goroutine。
在这里插入图片描述
为什么要让 m3 和 m4 自旋,自旋本质是在运行,线程在运行却没有执行 G,就变成了浪费 CPU. 为什么不销毁现场,来节约 CPU 资源。因为创建和销毁 CPU 也会浪费时间,我们希望当有新 goroutine 创建时,立刻能有 M 运行它,如果销毁再新建就增加了时延,降低了效率。当然也考虑了过多的自旋线程是浪费 CPU,所以系统中最多有 GOMAXPROCS 个自旋的线程 (当前例子中的 GOMAXPROCS=4,所以一共 4 个 P),多余的没事做线程会让他们休眠。

(10) 场景 10

假定当前除了 M3 和 M4 为自旋线程,还有 M5 和 M6 为空闲的线程 (没有得到 P 的绑定,注意我们这里最多就只能够存在 4 个 P,所以 P 的数量应该永远是 M>=P, 大部分都是 M 在抢占需要运行的 P),G8 创建了 G9,G8 进行了阻塞的系统调用,M2 和 P2 立即解绑,P2 会执行以下判断:如果 P2 本地队列有 G、全局队列有 G 或有空闲的 M,P2 都会立马唤醒 1 个 M 和它绑定,否则 P2 则会加入到空闲 P 列表,等待 M 来获取可用的 p。本场景中,P2 本地队列有 G9,可以和其他空闲的线程 M5 绑定。

在这里插入图片描述

(11) 场景 11

G8 创建了 G9,假如 G8 进行了非阻塞系统调用。
在这里插入图片描述
M2 和 P2 会解绑,但 M2 会记住 P2,然后 G8 和 M2 进入系统调用状态。当 G8 和 M2 退出系统调用时,会尝试获取之前绑定的 P2,如果无法获取,则获取空闲的 P,如果依然没有,G8 会被记为可运行状态,并加入到全局队列,M2 因为没有 P 的绑定而变成休眠状态 (长时间休眠等待 GC 回收销毁)

小结

总结,Go 调度器很轻量也很简单,足以撑起 goroutine 的调度工作,并且让 Go 具有了原生(强大)并发的能力。Go 调度本质是把大量的 goroutine 分配到少量线程上去执行,并利用多核并行,实现更强大的并发。

猜你喜欢

转载自blog.csdn.net/csdniter/article/details/112028411