【2020.12.30更新】数字信号处理公式推导

卷积

h ( t ) ⊗ x ( t ) = ∫ − ∞ + ∞ h ( τ ) x ( t − τ ) d τ h(t) \otimes x(t) = \int_{ - \infty }^{ + \infty } {h(\tau )x(t - \tau )d\tau } h(t)x(t)=+h(τ)x(tτ)dτ

τ = u + t 2 \tau = u + \frac{t}{2} τ=u+2t,则

h ( t ) ⊗ x ( t ) = ∫ − ∞ + ∞ h ( u + t 2 ) x ( − u + t 2 ) d u h(t) \otimes x(t) = \int_{ - \infty }^{ + \infty } {h(u + \frac{t}{2})x( - u + \frac{t}{2})du} h(t)x(t)=+h(u+2t)x(u+2t)du

h ( t ) ⊗ x ( − t ) = ∫ − ∞ + ∞ h ( u + t 2 ) x ( u − t 2 ) d u h(t) \otimes x( - t) = \int_{ - \infty }^{ + \infty } {h(u + \frac{t}{2})x(u - \frac{t}{2})du} h(t)x(t)=+h(u+2t)x(u2t)du

序列傅里叶变换(SFT)性质

SFT[1]= 2 π δ ~ ( ω ) 2\pi\tilde \delta (\omega ) 2πδ~(ω),其中 δ ~ ( ω ) \tilde \delta (\omega ) δ~(ω)为以 2 π 2\pi 2π为周期的周期单位冲激函数。
SFT[ e j ω 0 n {e^{j{\omega _0}n}} ejω0n]= 2 π δ ~ ( ω − ω 0 ) 2\pi\tilde \delta (\omega - \omega _0) 2πδ~(ωω0)

周期为 N N N的周期序列 x ~ ( n ) \tilde x(n) x~(n)的序列傅里叶变换

X ( e j ω ) = 2 π N ∑ k = − ∞ + ∞ X ~ ( k ) δ ( ω − 2 π N k ) X({e^{j\omega }}) = \frac{ {2\pi }}{N}\sum\limits_{k = - \infty }^{ + \infty } {\tilde X(k)\delta (\omega - \frac{ {2\pi }}{N}k)} X(ejω)=N2πk=+X~(k)δ(ωN2πk) P 76 P_{76} P76

x ~ ( t ) \tilde x(t) x~(t)

x ~ ( t ) = ∑ n = − ∞ ∞ x ~ ( n ) δ ( t − n T 0 ) \tilde x(t) = \sum\limits_{n = - \infty }^\infty {\tilde x(n)\delta (t - n{T_0})} x~(t)=n=x~(n)δ(tnT0)

是由 x ( t ) x(t) x(t) T T T为周期进行延拓后以 T 0 T_0 T0为间隔进行采样得到的。 x ~ ( n ) \tilde x(n) x~(n)周期为 N N N,即每个周期有 N N N个采样点,则 x ~ ( t ) \tilde x(t) x~(t)是周期为 T = N T 0 T=NT_0 T=NT0的采样信号,是连续信号,其傅里叶变换为。

X ~ ( j Ω ) = X ( e j ω ) ∣ ω = Ω T 0 = 2 π N ∑ k = − ∞ + ∞ X ~ ( k ) δ ( Ω T 0 − 2 π N k ) = 2 π N T 0 ∑ k = − ∞ + ∞ X ~ ( k ) δ ( Ω − 2 π N T 0 k ) = 2 π T ∑ k = − ∞ + ∞ X ~ ( k ) δ ( Ω − 2 π T k ) \tilde X(j\Omega ) = {\left. {X({e^{j\omega }})} \right|_{\omega = \Omega {T_0}}}\\ = \frac{ {2\pi }}{N}\sum\limits_{k = - \infty }^{ + \infty } {\tilde X(k)\delta (\Omega {T_0} - \frac{ {2\pi }}{N}k)} \\ = \frac{ {2\pi }}{ {N{T_0}}}\sum\limits_{k = - \infty }^{ + \infty } {\tilde X(k)\delta (\Omega - \frac{ {2\pi }}{ {N{T_0}}}k)} \\ = \frac{ {2\pi }}{T}\sum\limits_{k = - \infty }^{ + \infty } {\tilde X(k)\delta (\Omega - \frac{ {2\pi }}{T}k)} X~(jΩ)=X(ejω)ω=ΩT0=N2πk=+X~(k)δ(ΩT0N2πk)=NT02πk=+X~(k)δ(ΩNT02πk)=T2πk=+X~(k)δ(ΩT2πk)

那么 T x ~ ( t ) ↔ ∑ k = − ∞ + ∞ 2 π X ~ ( k ) δ ( Ω − 2 π T k ) T\tilde x(t) \leftrightarrow \sum\limits_{k = - \infty }^{ + \infty } {2\pi \tilde X(k)\delta (\Omega - \frac{ {2\pi }}{T}k)} Tx~(t)k=+2πX~(k)δ(ΩT2πk),也就是下面图中的公式。
在这里插入图片描述

S a Sa Sa函数与 s i n c sinc sinc函数的区别

S a ( x ) = sin ⁡ x x Sa(x) = \frac{ {\sin x}}{x} Sa(x)=xsinx

s i n c ( x ) = sin ⁡ ( π x ) π x sinc(x) = \frac{ {\sin (\pi x)}}{ {\pi x}} sinc(x)=πxsin(πx)

线性卷积与循环卷积

循环卷积序列是线性卷积序列以循环卷积的长度为周期周期延拓后的主值序列。

  • 循环卷积序列 是有限的。

概率密度函数的特征函数

概率密度函数的傅里叶变换

a = 0 a=0 a=0 γ = σ 2 = 1 \gamma=\sigma^2=1 γ=σ2=1时,成为标准 α \alpha α稳定分布
β = 0 \beta=0 β=0时称为对称分布,简称 S α S S\alpha S SαS分布

功率归一化

使信号的功率为1,即

y ′ = y 1 N ∑ n = 0 N − 1 ∣ y ( n ) ∣ 2 y' = \frac{y}{ {\sqrt {\frac{1}{N}\sum\limits_{n = 0}^{N - 1} { { {\left| {y(n)} \right|}^2}} } }} y=N1n=0N1y(n)2 y

剩余码间干扰(ISI)定义

I S I = ∑ ∣ θ ( n ) ∣ 2 max ⁡ ∣ θ ( n ) ∣ 2 ISI = \frac{ {\sum { { {\left| {\theta (n)} \right|}^2}} }}{ {\max { {\left| {\theta (n)} \right|}^2}}} ISI=maxθ(n)2θ(n)2


I S I = ∑ ∣ θ ( n ) ∣ 2 − max ⁡ ∣ θ ( n ) ∣ 2 max ⁡ ∣ θ ( n ) ∣ 2 ISI = \frac{ {\sum { { {\left| {\theta (n)} \right|}^2}} - \max { {\left| {\theta (n)} \right|}^2}}}{ {\max { {\left| {\theta (n)} \right|}^2}}} ISI=maxθ(n)2θ(n)2maxθ(n)2

猜你喜欢

转载自blog.csdn.net/wlwdecs_dn/article/details/109061497