证据理论入门笔记(2)—— 多种合成公式

Yager 合成公式

  Yager 合成公式去掉了 DS 合成公式中的归一化因子 1 1 − k \frac{1}{1-k} 1k1 ,并将冲突系数 k k k 分配给了辨识框架 Ω \Omega Ω 对应的基本概率分配函数 m ( Ω ) m(\Omega) m(Ω)。公式定义如下: k = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = ∅ m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯ k=\sum_{A_1\cap A_2\cap A_3\cdots=\emptyset}m_1(A_1)m_2(A_2)m_3(A_3)\cdots k=A1A2A3=m1(A1)m2(A2)m3(A3) m ( ∅ ) = 0 m ( A ) = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = A m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯   , A ≠ ∅ , Ω m ( Ω ) = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = Ω m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯ + k \begin{aligned} m(\emptyset)&=0 \\ \\ m(A)&=\sum_{A_1\cap A_2\cap A_3\cdots=A}m_1(A_1)m_2(A_2)m_3(A_3)\cdots,\quad A \neq\emptyset,\Omega \\ \\ m(\Omega)&=\sum_{A_1\cap A_2\cap A_3\cdots=\Omega}m_1(A_1)m_2(A_2)m_3(A_3)\cdots+k \\ \end{aligned} m()m(A)m(Ω)=0=A1A2A3=Am1(A1)m2(A2)m3(A3),A=,Ω=A1A2A3=Ωm1(A1)m2(A2)m3(A3)+k

Example

Ω = { A , B , C } m 1 : m 1 ( { A } ) = 0.98 , m 1 ( { B } ) = 0.01 , m 1 ( { C } ) = 0.01 m 2 : m 2 ( { A } ) = 0 , m 2 ( { B } ) = 0.01 , m 2 ( { C } ) = 0.99 m 3 : m 3 ( { A } ) = 0.9 , m 3 ( { B } ) = 0 ,   m 3 ( { C } ) = 0.1 \begin{aligned} &\Omega=\{A,B,C\} &\quad &\quad \\ &m_1:m_1(\{A\})=0.98,& m_1(\{B\})=0.01,\quad & m_1(\{C\})=0.01 \\ &m_2:m_2(\{A\})=0, & m_2(\{B\})=0.01,\quad & m_2(\{C\})=0.99 \\ &m_3:m_3(\{A\})=0.9, & m_3(\{B\})=0, \:\qquad&m_3(\{C\})=0.1 \\ \end{aligned} Ω={ A,B,C}m1:m1({ A})=0.98,m2:m2({ A})=0,m3:m3({ A})=0.9,m1({ B})=0.01,m2({ B})=0.01,m3({ B})=0,m1({ C})=0.01m2({ C})=0.99m3({ C})=0.1 k = 1 − [ m 1 ( { A } ) m 2 ( { A } ) m 3 ( { A } ) + m 1 ( { B } ) m 2 ( { B } ) m 3 ( { B } ) + m 1 ( { C } ) m 2 ( { C } ) m 3 ( { C } ) ] = 1 − [ 0.98 × 0 × 0.9 + 0.01 × 0.01 × 0 + 0.01 × 0.99 × 0.1 ] = 0.99901 m ( { A } ) = m 1 ( { A } ) m 2 ( { A } ) m 3 ( { A } ) = 0.98 × 0 × 0.9 = 0 m ( { B } ) = 0 m ( { C } ) = m 1 ( { C } ) m 2 ( { C } ) m 3 ( { C } ) 1 − k = 0.01 × 0.99 × 0.1 = 0.00099 m ( Ω ) = 0 + k = 0.99901 \begin{aligned} k&=1-[m_1(\{A\})m_2(\{A\})m_3(\{A\})+m_1(\{B\})m_2(\{B\})m_3(\{B\})+m_1(\{C\})m_2(\{C\})m_3(\{C\})] \\ &=1-[0.98\times0\times0.9+0.01\times0.01\times0+0.01\times0.99\times0.1] \\ &=0.99901 \\ m(\{A\})&=m_1(\{A\})m_2(\{A\})m_3(\{A\}) \\ &=0.98\times0\times0.9 \\ &=0 \\ m(\{B\})&=0 \\ m(\{C\})&=\frac{m_1(\{C\})m_2(\{C\})m_3(\{C\})}{1-k} \\ &=0.01\times0.99\times0.1 \\ &=0.00099 \\ m(\Omega)&=0+k=0.99901 \\ \end{aligned} km({ A})m({ B})m({ C})m(Ω)=1[m1({ A})m2({ A})m3({ A})+m1({ B})m2({ B})m3({ B})+m1({ C})m2({ C})m3({ C})]=1[0.98×0×0.9+0.01×0.01×0+0.01×0.99×0.1]=0.99901=m1({ A})m2({ A})m3({ A})=0.98×0×0.9=0=0=1km1({ C})m2({ C})m3({ C})=0.01×0.99×0.1=0.00099=0+k=0.99901

孙全提出的合成公式

  有 n 个证据源,对的应基本概率分配函数为 m 1 , m 2 , ⋯   , m n m_1,m_2,\cdots,m_n m1,m2,,mn。设证据源 i i i j j j 之间的冲突系数为 k i j k_{ij} kij k i j = ∑ A 1 ∩ A 2 = ∅ m i ( A 1 ) m j ( A 2 ) = 1 − ∑ A 1 ∩ A 2 ≠ ∅ m i ( A 1 ) m j ( A 2 ) k_{ij}=\sum_{A_1\cap A_2=\emptyset}m_i(A_1)m_j(A_2)=1-\sum_{A_1\cap A_2\neq\emptyset}m_i(A_1)m_j(A_2) kij=A1A2=mi(A1)mj(A2)=1A1A2=mi(A1)mj(A2) ε \varepsilon ε 为证据的可信度: ε = e − k ^ , k ^ = 2 n ( n − 1 ) ∑ i < j k i j \varepsilon=e^{-\hat{k}}, \quad \hat{k}=\frac{2}{n(n-1)}\sum_{i<j}k_{ij} ε=ek^,k^=n(n1)2i<jkij 公式定义如下: m ( ∅ ) = 0 m(\emptyset)=0 m()=0 m ( A ) = p ( A ) + k × ε × q ( A ) , A ≠ ∅ , Ω m(A)=p(A)+k\times\varepsilon\times q(A),\quad A \neq\emptyset,\Omega m(A)=p(A)+k×ε×q(A),A=,Ω m ( Ω ) = p ( Ω ) + k × ε × q ( Ω ) + k ( 1 − ε ) m(\Omega)=p(\Omega)+k\times\varepsilon\times q(\Omega)+k(1-\varepsilon) m(Ω)=p(Ω)+k×ε×q(Ω)+k(1ε) p ( A ) = ∑ A 1 ∩ A 2 ∩ ⋯ ∩ A n = A m 1 ( A 1 ) m 2 ( A 2 ) ⋯ m n ( A n ) p(A)=\sum_{A_1\cap A_2\cap\cdots\cap A_n=A}m_1(A_1)m_2(A_2)\cdots m_n(A_n) p(A)=A1A2An=Am1(A1)m2(A2)mn(An) q ( A ) = 1 n ∑ i = 1 n m i ( A ) q(A)=\frac{1}{n}\sum_{i=1}^{n}m_i(A) q(A)=n1i=1nmi(A) m ( A ) m(A) m(A) 又可写成如下形式: m ( A ) = ( 1 − k ) p ( A ) 1 − k + k × ε × q ( A ) m(A)=(1-k)\frac{p(A)}{1-k}+k\times\varepsilon\times q(A) m(A)=(1k)1kp(A)+k×ε×q(A) 式中第一项的 p ( A ) 1 − k \frac{p(A)}{1-k} 1kp(A) 是 DS 合成公式。

Example

(本示例采用前面 Yager 合成公式示例给出的数据)
k 12 = ∑ A 1 ∩ A 2 = ∅ m 1 ( A 1 ) m 2 ( A 2 ) = m 1 ( { A } ) m 2 ( { B } ) + m 1 ( { A } ) m 2 ( { C } ) + m 1 ( { B } ) m 2 ( { A } ) + m 1 ( { B } ) m 2 ( { C } ) + m 1 ( { C } ) m 2 ( { A } ) + m 1 ( { C } ) m 2 ( { B } ) = 0.99 k 13 = 1 − ∑ A 1 ∩ A 3 ≠ ∅ m 1 ( A 1 ) m 3 ( A 3 ) = 1 − [ m 1 ( { A } ) m 3 ( { A } ) + m 1 ( { B } ) m 3 ( { B } ) + m 1 ( { C } ) m 3 ( { C } ) ] = 0.117 k 23 = 0.901 k ^ = 2 n ( n − 1 ) ∑ i < j k i j = 2 3 × ( 3 − 1 ) ( 0.99 + 0.117 + 0.901 ) = 0.6693 ε = e − k ^ = 0.5120 m ( { A } ) = ( 1 − k ) p ( { A } ) 1 − k + k × ε × q ( { A } ) = 0 + 0.99901 × 0.5120 × 1 3 ( 0.98 + 0 + 0.9 ) = 0.3205 m ( { B } ) = ( 1 − k ) p ( { B } ) 1 − k + k × ε × q ( { B } ) = 0 + 0.99901 × 0.5120 × 1 3 ( 0.01 + 0.01 + 0 ) = 0.0034 m ( { C } ) = ( 1 − k ) p ( { C } ) 1 − k + k × ε × q ( { C } ) = ( 1 − 0.99901 ) × 1 + 0.99901 × 0.5120 × 1 3 ( 0.01 + 0.99 + 0.1 ) = 0.1885 m ( Ω ) = ( 1 − k ) p ( Ω ) 1 − k + k × ε × q ( Ω ) + k ( 1 − ε ) = 0 + 0 + 0.99901 × ( 1 − 0.5120 ) = 0.4875 \begin{aligned} k_{12}&=\sum_{A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2) \\ &=m_1(\{A\})m_2(\{B\})+m_1(\{A\})m_2(\{C\})+m_1(\{B\})m_2(\{A\})+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{A\})+m_1(\{C\})m_2(\{B\}) \\ &=0.99 \\ k_{13}&=1-\sum_{A_1\cap A_3\neq\emptyset}m_1(A_1)m_3(A_3) \\ &=1-[m_1(\{A\})m_3(\{A\})+m_1(\{B\})m_3(\{B\})+m_1(\{C\})m_3(\{C\})] \\ &=0.117 \\ k_{23}&=0.901 \\ \hat{k}&=\frac{2}{n(n-1)}\sum_{i<j}k_{ij} \\ &=\frac{2}{3\times(3-1)}(0.99+0.117+0.901) \\ &=0.6693 \\ \varepsilon&=e^{-\hat{k}}=0.5120 \\ m(\{A\})&=(1-k)\frac{p(\{A\})}{1-k}+k\times\varepsilon\times q(\{A\}) \\ &=0+0.99901\times0.5120\times\frac{1}{3}(0.98+0+0.9) \\ &=0.3205 \\ m(\{B\})&=(1-k)\frac{p(\{B\})}{1-k}+k\times\varepsilon\times q(\{B\}) \\ &=0+0.99901\times0.5120\times\frac{1}{3}(0.01+0.01+0) \\ &=0.0034 \\ m(\{C\})&=(1-k)\frac{p(\{C\})}{1-k}+k\times\varepsilon\times q(\{C\}) \\ &=(1-0.99901)\times1+0.99901\times0.5120\times\frac{1}{3}(0.01+0.99+0.1) \\ &=0.1885 \\ m(\Omega)&=(1-k)\frac{p(\Omega)}{1-k}+k\times\varepsilon\times q(\Omega)+k(1-\varepsilon) \\ &=0+0+0.99901\times(1-0.5120) \\ &=0.4875 \\ \end{aligned} k12k13k23k^εm({ A})m({ B})m({ C})m(Ω)=A1A2=m1(A1)m2(A2)=m1({ A})m2({ B})+m1({ A})m2({ C})+m1({ B})m2({ A})+m1({ B})m2({ C})+m1({ C})m2({ A})+m1({ C})m2({ B})=0.99=1A1A3=m1(A1)m3(A3)=1[m1({ A})m3({ A})+m1({ B})m3({ B})+m1({ C})m3({ C})]=0.117=0.901=n(n1)2i<jkij=3×(31)2(0.99+0.117+0.901)=0.6693=ek^=0.5120=(1k)1kp({ A})+k×ε×q({ A})=0+0.99901×0.5120×31(0.98+0+0.9)=0.3205=(1k)1kp({ B})+k×ε×q({ B})=0+0.99901×0.5120×31(0.01+0.01+0)=0.0034=(1k)1kp({ C})+k×ε×q({ C})=(10.99901)×1+0.99901×0.5120×31(0.01+0.99+0.1)=0.1885=(1k)1kp(Ω)+k×ε×q(Ω)+k(1ε)=0+0+0.99901×(10.5120)=0.4875

Smets 合成公式

  Smets 认为证据源之间的冲突只能来自于对辨识框架的错误定义。这样,Smets 将冲突系数 k k k 保留不用,而不用于归一化。(论文[2]中用 m ( ∅ ) m(\emptyset) m() 表示 k k k,根据论文中给的示例来看 m ( ∅ ) m(\emptyset) m() 不表示空集的 bpa,空集的 bpa 依然是0,论文中的 ∅ \emptyset 被解释为一个或几个假设没有被考虑在最初的辨识框架中。但是这样合成后的 bpa 累加和会小于1。)公式定义如下: m ( A ) = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = A m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯   , A ≠ ∅ k = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = ∅ m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯ \begin{aligned} m(A)&=\sum_{A_1\cap A_2\cap A_3\cdots=A}m_1(A_1)m_2(A_2)m_3(A_3)\cdots,\quad A \neq\emptyset \\ \\ k&=\sum_{A_1\cap A_2\cap A_3\cdots=\emptyset}m_1(A_1)m_2(A_2)m_3(A_3)\cdots \end{aligned} m(A)k=A1A2A3=Am1(A1)m2(A2)m3(A3),A==A1A2A3=m1(A1)m2(A2)m3(A3)

Example

(本示例采用前面 Yager 合成公式示例给出的数据)
k = 0.99901 m ( { A } ) = 0 m ( { B } ) = 0 m ( { C } ) = 0.00099 m ( Ω ) = 0 m ( ∅ ) = 0 \begin{aligned} k&=0.99901 \\ m(\{A\})&=0 \\ m(\{B\})&=0 \\ m(\{C\})&=0.00099 \\ m(\Omega)&=0 \\ m(\emptyset)&=0 \\ \end{aligned} km({ A})m({ B})m({ C})m(Ω)m()=0.99901=0=0=0.00099=0=0

Dubois and Prade 合成公式

  对于有两个证据源的问题,证据源1有子集(命题) A 1 A_1 A1,证据源2有子集 A 2 A_2 A2,当 A 1 ∩ A 2 = ∅ A_1\cap A_2=\emptyset A1A2= 时, m 1 ( A 1 ) ⋅ m 2 ( A 2 ) m_1(A_1)\cdot m_2(A_2) m1(A1)m2(A2) 被分配给子集 B ∪ C B\cup C BC。公式定义如下: m ( A ) = ∑ A 1 ∩ A 2 = A m 1 ( A 1 ) m 2 ( A 2 ) + ∑ A 1 ∪ A 2 = A , A 1 ∩ A 2 = ∅ m 1 ( A 1 ) m 2 ( A 2 ) m(A)=\sum_{A_1\cap A_2=A}m_1(A_1)m_2(A_2)+\sum_{A_1\cup A_2=A,A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2) m(A)=A1A2=Am1(A1)m2(A2)+A1A2=A,A1A2=m1(A1)m2(A2)

Example

Ω = { A , B , C } m 1 : m 1 ( { A } ) = 0.1 , m 1 ( { B } ) = 0.1 , m 1 ( { C } ) = 0.8 m 2 : m 2 ( { A } ) = 0.8 , m 2 ( { B } ) = 0.1 , m 2 ( { C } ) = 0.1 \begin{aligned} &\Omega=\{A,B,C\} &\quad &\quad \\ &m_1:m_1(\{A\})=0.1,& m_1(\{B\})=0.1,&\quad m_1(\{C\})=0.8 \\ &m_2:m_2(\{A\})=0.8,& m_2(\{B\})=0.1,&\quad m_2(\{C\})=0.1 \\ \end{aligned} Ω={ A,B,C}m1:m1({ A})=0.1,m2:m2({ A})=0.8,m1({ B})=0.1,m2({ B})=0.1,m1({ C})=0.8m2({ C})=0.1 k = m 1 ( { A } ) m 2 ( { B } ) + m 1 ( { A } ) m 2 ( { C } ) + m 1 ( { B } ) m 2 ( { A } ) + m 1 ( { B } ) m 2 ( { C } ) + m 1 ( { C } ) m 2 ( { A } ) + m 1 ( { C } ) m 2 ( { B } ) = 0.1 × 0.1 + 0.1 × 0.1 + 0.1 × 0.8 + 0.1 × 0.1 + 0.8 × 0.8 + 0.8 × 0.1 = 0.83 m ( { A } ) = m 1 ( { A } ) m 2 ( { A } ) = 0.1 × 0.8 = 0.08 m ( { B } ) = 0.01 m ( { C } ) = 0.08 m ( { A , B } ) = ∑ A 1 ∩ A 2 = { A , B } m 1 ( A 1 ) m 2 ( A 2 ) + ∑ A 1 ∪ A 2 = { A , B } , A 1 ∩ A 2 = ∅ m 1 ( A 1 ) m 2 ( A 2 ) = 0 + m 1 ( { A } ) m 2 ( { B } ) + m 1 ( { B } ) m 2 ( { A } ) = 0 + 0.1 × 0.1 + 0.1 × 0.8 = 0.09 m ( { A , C } ) = 0 + m 1 ( { A } ) m 2 ( { C } ) + m 1 ( { C } ) m 2 ( { A } ) = 0 + 0.1 × 0.1 + 0.8 × 0.8 = 0.65 m ( { B , C } ) = 0 + m 1 ( { B } ) m 2 ( { C } ) + m 1 ( { C } ) m 2 ( { B } ) = 0 + 0.1 × 0.1 + 0.1 × 0.8 = 0.09 m ( { A , B , C } ) = 0 \begin{aligned} k&=m_1(\{A\})m_2(\{B\})+m_1(\{A\})m_2(\{C\})+m_1(\{B\})m_2(\{A\})+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{A\})+m_1(\{C\})m_2(\{B\}) \\ &= 0.1\times0.1+0.1\times0.1+0.1\times0.8+0.1\times0.1+0.8\times0.8+0.8\times0.1 \\ &=0.83 \\ m(\{A\})&=m_1(\{A\})m_2(\{A\}) \\ &=0.1\times0.8 \\ &=0.08 \\ m(\{B\})&=0.01 \\ m(\{C\})&=0.08 \\ m(\{A,B\})&= \sum_{A_1\cap A_2=\{A,B\}}m_1(A_1)m_2(A_2)+\sum_{A_1\cup A_2=\{A,B\},A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2) \\ &=0+m_1(\{A\})m_2(\{B\})+m_1(\{B\})m_2(\{A\}) \\ &=0+0.1\times0.1+0.1\times0.8 \\ &=0.09 \\ m(\{A,C\})&=0+m_1(\{A\})m_2(\{C\})+m_1(\{C\})m_2(\{A\}) \\ &=0+0.1\times0.1+0.8\times0.8 \\ &=0.65 \\ m(\{B,C\})&=0+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{B\}) \\ &=0+0.1\times0.1+0.1\times0.8 \\ &=0.09 \\ m(\{A,B,C\})&=0 \end{aligned} km({ A})m({ B})m({ C})m({ A,B})m({ A,C})m({ B,C})m({ A,B,C})=m1({ A})m2({ B})+m1({ A})m2({ C})+m1({ B})m2({ A})+m1({ B})m2({ C})+m1({ C})m2({ A})+m1({ C})m2({ B})=0.1×0.1+0.1×0.1+0.1×0.8+0.1×0.1+0.8×0.8+0.8×0.1=0.83=m1({ A})m2({ A})=0.1×0.8=0.08=0.01=0.08=A1A2={ A,B}m1(A1)m2(A2)+A1A2={ A,B},A1A2=m1(A1)m2(A2)=0+m1({ A})m2({ B})+m1({ B})m2({ A})=0+0.1×0.1+0.1×0.8=0.09=0+m1({ A})m2({ C})+m1({ C})m2({ A})=0+0.1×0.1+0.8×0.8=0.65=0+m1({ B})m2({ C})+m1({ C})m2({ B})=0+0.1×0.1+0.1×0.8=0.09=0

Discounting and Dempster 合成公式

  该方法先给每个证据源分配一个表示信任度的系数 α \alpha α,用 m α i , i m_{\alpha_i,i} mαi,i 表示第 i i i 个证据源被折扣后的基本概率分配函数。公式定义如下: m α i , i ( A ) = α i m i ( A ) , A ≠ Ω m_{\alpha_i,i}(A)=\alpha_im_i(A),\quad A \neq \Omega mαi,i(A)=αimi(A),A=Ω m α i , i ( Ω ) = 1 − α i + α i m i ( Ω ) m_{\alpha_i,i}(\Omega)=1-\alpha_i+\alpha_im_i(\Omega) mαi,i(Ω)=1αi+αimi(Ω) 然后采用 DS 合成公式合成各证据源的 m α i , i m_{\alpha_i,i} mαi,i
  当 α i = 0 \alpha_i=0 αi=0 时,表示第 i i i 个证据源有问题,不信任它;当 α i = 1 \alpha_i=1 αi=1 时,表示完全信任第 i i i 个证据源。

Example

(本示例采用前面 Dubois and Prade 合成公式示例给出的数据, α 1 = 0.2 \alpha_1=0.2 α1=0.2 α 2 = 0.8 \alpha_2=0.8 α2=0.8
m 0.2 , 1 : m 0.2 , 1 ( { A } ) = 0.02 , m 0.2 , 1 ( { B } ) = 0.02 , m 0.2 , 1 ( { C } ) = 0.16 , m 0.2 , 1 ( Ω ) = 0.8 m 0.8 , 2 : m 0.8 , 2 ( { A } ) = 0.64 , m 0.8 , 2 ( { B } ) = 0.08 , m 0.8 , 2 ( { C } ) = 0.08 , m 0.8 , 2 ( Ω ) = 0.2 \begin{aligned} &m_{0.2,1}:m_{0.2,1}(\{A\})=0.02,& m_{0.2,1}(\{B\})=0.02,&\quad m_{0.2,1}(\{C\})=0.16,\quad m_{0.2,1}(\Omega)=0.8 \\ &m_{0.8,2}:m_{0.8,2}(\{A\})=0.64,& m_{0.8,2}(\{B\})=0.08,&\quad m_{0.8,2}(\{C\})=0.08,\quad m_{0.8,2}(\Omega)=0.2 \\ \end{aligned} m0.2,1:m0.2,1({ A})=0.02,m0.8,2:m0.8,2({ A})=0.64,m0.2,1({ B})=0.02,m0.8,2({ B})=0.08,m0.2,1({ C})=0.16,m0.2,1(Ω)=0.8m0.8,2({ C})=0.08,m0.8,2(Ω)=0.2 k = m 0.2 , 1 ( { A } ) m 0.8 , 2 ( { B } ) + m 0.2 , 1 ( { A } ) m 0.8 , 2 ( { C } ) + m 0.2 , 1 ( { B } ) m 0.8 , 2 ( { A } ) + m 0.2 , 1 ( { B } ) m 0.8 , 2 ( { C } ) + m 0.2 , 1 ( { C } ) m 0.8 , 2 ( { A } ) + m 0.2 , 1 ( { C } ) m 0.8 , 2 ( { B } ) = 0.02 × 0.08 + 0.02 × 0.08 + 0.02 × 0.64 + 0.02 × 0.08 + 0.16 × 0.64 + 0.16 × 0.08 = 0.1328 m ( { A } ) = m 0.2 , 1 ( { A } ) m 0.8 , 2 ( { A } ) + m 0.2 , 1 ( { A } ) m 0.8 , 2 ( Ω ) + m 0.2 , 1 ( Ω ) m 0.8 , 2 ( { A } ) 1 − k = 0.02 × 0.64 + 0.02 × 0.2 + 0.8 × 0.64 1 − 0.1328 = 0.6098 m ( { B } ) = m 0.2 , 1 ( { B } ) m 0.8 , 2 ( { B } ) + m 0.2 , 1 ( { B } ) m 0.8 , 2 ( Ω ) + m 0.2 , 1 ( Ω ) m 0.8 , 2 ( { B } ) 1 − k = 0.02 × 0.08 + 0.02 × 0.2 + 0.8 × 0.08 1 − 0.1328 = 0.0803 m ( { C } ) = m 0.2 , 1 ( { C } ) m 0.8 , 2 ( { C } ) + m 0.2 , 1 ( { C } ) m 0.8 , 2 ( Ω ) + m 0.2 , 1 ( Ω ) m 0.8 , 2 ( { C } ) 1 − k = 0.16 × 0.08 + 0.16 × 0.2 + 0.8 × 0.08 1 − 0.1328 = 0.1255 m ( Ω ) = m 0.2 , 1 ( Ω ) m 0.8 , 2 ( Ω ) 1 − k = 0.8 × 0.2 1 − 0.1328 = 0.1845 \begin{aligned} k&=m_{0.2,1}(\{A\})m_{0.8,2}(\{B\})+m_{0.2,1}(\{A\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{B\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{B\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{C\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{C\})m_{0.8,2}(\{B\}) \\ &= 0.02\times0.08+0.02\times0.08+0.02\times0.64+0.02\times0.08+0.16\times0.64+0.16\times0.08 \\ &=0.1328\\ m(\{A\})&=\frac{m_{0.2,1}(\{A\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{A\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{A\})}{1-k} \\ &=\frac{0.02\times0.64+0.02\times0.2+0.8\times0.64}{1-0.1328} \\ &=0.6098 \\ m(\{B\})&=\frac{m_{0.2,1}(\{B\})m_{0.8,2}(\{B\})+m_{0.2,1}(\{B\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{B\})}{1-k} \\ &=\frac{0.02\times0.08+0.02\times0.2+0.8\times0.08}{1-0.1328} \\ &=0.0803\\ m(\{C\})&=\frac{m_{0.2,1}(\{C\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{C\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{C\})}{1-k} \\ &=\frac{0.16\times0.08+0.16\times0.2+0.8\times0.08}{1-0.1328} \\ &=0.1255\\ m(\Omega)&=\frac{m_{0.2,1}(\Omega)m_{0.8,2}(\Omega)}{1-k} \\ &=\frac{0.8\times0.2}{1-0.1328} \\ &=0.1845 \\ \end{aligned} km({ A})m({ B})m({ C})m(Ω)=m0.2,1({ A})m0.8,2({ B})+m0.2,1({ A})m0.8,2({ C})+m0.2,1({ B})m0.8,2({ A})+m0.2,1({ B})m0.8,2({ C})+m0.2,1({ C})m0.8,2({ A})+m0.2,1({ C})m0.8,2({ B})=0.02×0.08+0.02×0.08+0.02×0.64+0.02×0.08+0.16×0.64+0.16×0.08=0.1328=1km0.2,1({ A})m0.8,2({ A})+m0.2,1({ A})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({ A})=10.13280.02×0.64+0.02×0.2+0.8×0.64=0.6098=1km0.2,1({ B})m0.8,2({ B})+m0.2,1({ B})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({ B})=10.13280.02×0.08+0.02×0.2+0.8×0.08=0.0803=1km0.2,1({ C})m0.8,2({ C})+m0.2,1({ C})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({ C})=10.13280.16×0.08+0.16×0.2+0.8×0.08=0.1255=1km0.2,1(Ω)m0.8,2(Ω)=10.13280.8×0.2=0.1845

Murphy 合成公式

  设有 n n n 个证据源,该方法先将 n n n 个证据源的 bpa 取平均得到 m a v g m_{avg} mavg,再用 DS 合成公式对 m a v g m_{avg} mavg 迭代 ( n − 1 ) (n-1) (n1) 次得到合成后的 bpa。令 f D S ( S 1 , S 2 ) f_{DS}(S_1,S_2) fDS(S1,S2) 表示两个证据源的 DS 合成公式, m i m^i mi 表示第 i i i 次迭代后的 bpa,则 Murphy 合成公式定义如下: m 1 = f D S ( m a v g , m a v g ) m^1=f_{DS}(m_{avg},m_{avg}) m1=fDS(mavg,mavg) m i = f D S ( m i − 1 , m a v g ) , i ≥ 2 m^i=f_{DS}(m^{i-1},m_{avg}),\quad i \geq2 mi=fDS(mi1,mavg),i2

Example

Ω = { A , B , C } m 1 : m 1 ( { A } ) = 0.5 , m 1 ( { B , C } ) = 0.5 , m 2 : m 2 ( { C } ) = 0.5 , m 2 ( { A , B } ) = 0.5 \begin{aligned} &\Omega=\{A,B,C\} \\ &m_1:m_1(\{A\})=0.5,& m_1(\{B,C\})=0.5, \\ &m_2:m_2(\{C\})=0.5,& m_2(\{A,B\})=0.5 \\ \end{aligned} Ω={ A,B,C}m1:m1({ A})=0.5,m2:m2({ C})=0.5,m1({ B,C})=0.5,m2({ A,B})=0.5 m a v g ( { A } ) = m a v g ( { C } ) = m a v g ( { A , B } ) = m a v g ( { B , C } ) = 0.25 m_{avg}(\{A\})=m_{avg}(\{C\})=m_{avg}(\{A,B\})=m_{avg}(\{B,C\})=0.25 mavg({ A})=mavg({ C})=mavg({ A,B})=mavg({ B,C})=0.25
k = m a v g ( { A } ) m a v g ( { C } ) + m a v g ( { A } ) m a v g ( { B , C } ) + m a v g ( { C } ) m a v g ( { A } ) + m a v g ( { C } ) m a v g ( { A , B } ) + m a v g ( { A , B } ) m a v g ( { C } ) + m a v g ( { B , C } ) m a v g ( { A } ) = 0.25 × 0.25 × 6 = 0.375 m ( { A } ) = m a v g ( { A } ) m a v g ( { A } ) + m a v g ( { A } ) m a v g ( { A , B } ) + m a v g ( { A , B } ) m a v g ( { A } ) 1 − k = 0.25 × 0.25 × 3 1 − 0.375 = 0.3 m ( { B } ) = m a v g ( { A , B } ) m a v g ( { B , C } ) + m a v g ( { B , C } ) m a v g ( { A , B } ) 1 − k = 0.25 × 0.25 × 2 1 − 0.375 = 0.2 m ( { C } ) = m a v g ( { C } ) m a v g ( { C } ) + m a v g ( { C } ) m a v g ( { B , C } ) + m a v g ( { B , C } ) m a v g ( { C } ) 1 − k = 0.25 × 0.25 × 3 1 − 0.375 = 0.3 m ( { A , B } ) = m a v g ( { A , B } ) m a v g ( { A , B } ) 1 − k = 0.25 × 0.25 1 − 0.375 = 0.1 m ( { B , C } ) = m a v g ( { B , C } ) m a v g ( { B , C } ) 1 − k = 0.25 × 0.25 1 − 0.375 = 0.1 \begin{aligned} k&=m_{avg}(\{A\})m_{avg}(\{C\})+m_{avg}(\{A\})m_{avg}(\{B,C\})+m_{avg}(\{C\})m_{avg}(\{A\})+m_{avg}(\{C\})m_{avg}(\{A,B\})+m_{avg}(\{A,B\})m_{avg}(\{C\})+m_{avg}(\{B,C\})m_{avg}(\{A\}) \\ &=0.25\times0.25\times6 \\ &=0.375 \\ m(\{A\})&=\frac{m_{avg}(\{A\})m_{avg}(\{A\})+m_{avg}(\{A\})m_{avg}(\{A,B\})+m_{avg}(\{A,B\})m_{avg}(\{A\})}{1-k} \\ &=\frac{0.25\times0.25\times3}{1-0.375} \\ &=0.3 \\ m(\{B\})&=\frac{m_{avg}(\{A,B\})m_{avg}(\{B,C\})+m_{avg}(\{B,C\})m_{avg}(\{A,B\})}{1-k} \\ &=\frac{0.25\times0.25\times2}{1-0.375} \\ &=0.2 \\ m(\{C\})&=\frac{m_{avg}(\{C\})m_{avg}(\{C\})+m_{avg}(\{C\})m_{avg}(\{B,C\})+m_{avg}(\{B,C\})m_{avg}(\{C\})}{1-k} \\ &=\frac{0.25\times0.25\times3}{1-0.375} \\ &=0.3 \\ m(\{A,B\})&=\frac{m_{avg}(\{A,B\})m_{avg}(\{A,B\})}{1-k} \\ &=\frac{0.25\times0.25}{1-0.375} \\ &=0.1 \\ m(\{B,C\})&=\frac{m_{avg}(\{B,C\})m_{avg}(\{B,C\})}{1-k} \\ &=\frac{0.25\times0.25}{1-0.375} \\ &=0.1 \\ \end{aligned} km({ A})m({ B})m({ C})m({ A,B})m({ B,C})=mavg({ A})mavg({ C})+mavg({ A})mavg({ B,C})+mavg({ C})mavg({ A})+mavg({ C})mavg({ A,B})+mavg({ A,B})mavg({ C})+mavg({ B,C})mavg({ A})=0.25×0.25×6=0.375=1kmavg({ A})mavg({ A})+mavg({ A})mavg({ A,B})+mavg({ A,B})mavg({ A})=10.3750.25×0.25×3=0.3=1kmavg({ A,B})mavg({ B,C})+mavg({ B,C})mavg({ A,B})=10.3750.25×0.25×2=0.2=1kmavg({ C})mavg({ C})+mavg({ C})mavg({ B,C})+mavg({ B,C})mavg({ C})=10.3750.25×0.25×3=0.3=1kmavg({ A,B})mavg({ A,B})=10.3750.25×0.25=0.1=1kmavg({ B,C})mavg({ B,C})=10.3750.25×0.25=0.1

参考文献

[1] 孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000, 28(8):117-119.
[2] Lefevre E , Colot O , Vannoorenberghe P . Belief function combination and conflict management[J]. Information Fusion, 2002, 3(2):149-162.
[3] Murphy C K . Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000.

猜你喜欢

转载自blog.csdn.net/QDchenxr/article/details/113733098