高级篇(day06)-MySQL索引的数据结构

MySQL索引的数据结构

1、索引概述

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效率获取数据的数据结构。

索引的本质

索引是数据结构。你可以简单理解为“排好序的快速查找数据结构”,满足特定查找算法。这些数据结构以某种方式指向数据,这样就可以在这些数据结构的基础上实现高级查找算法。索引是在存储引擎中实现的,因此每种存储引擎的索引不一定完全相同,并且每种存储引擎不一定支持所有索引类型。同时,存储引擎可以定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。有些存储引擎支持更多的索引数和更大的索引长度。

重点

建立在数据库表字段上的索引会影响到MySQL查找(WHERE的查询条件)和排序(ORDER BY)两大功能!

下图就是一种可能的索引方式示例

image.png

左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址。为了加快Col2中数据记录 的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在一定的复杂度内获取到相应数据,从而快速的检索出符合条件的记录。

索引的目的在于提高查询效率,可以类比字典的目录。如果要查mysql这个这个单词,我们肯定要先定位到m字母,然后从上往下找y字母,再找剩下的sql。如果没有索引,那么可能需要a---z,这样全字典扫描,如果我想找Java开头的单词呢?如果我想找Oracle开头的单词呢???

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储在磁盘上

# Linux下查看磁盘空间命令 df -h 
[root@Ringo ~]# df -h
Filesystem      Size  Used Avail Use% Mounted on
/dev/vda1        40G   16G   23G  41% /
devtmpfs        911M     0  911M   0% /dev
tmpfs           920M     0  920M   0% /dev/shm
tmpfs           920M  480K  920M   1% /run
tmpfs           920M     0  920M   0% /sys/fs/cgroup
overlay          40G   16G   23G  41% 
复制代码

我们平时所说的索引,如果没有特别指明,都是在innodb引擎下,都是指B+树(多路搜索树,并不一定是二叉的)结构组织的索引。其中聚集索引,次要索引,覆盖索引,复合索引,前缀索引,唯一索引默认都是使用B+树索引,统称索引。当然,除了B+树这种数据结构的索引之外,还有哈希索引(Hash Index)等。

MyISAM、InnoDB、Memory三种存储引擎对各种索引类型的支持

索引 INNODB引擎 MYISAM引擎 MEMORY引擎
BTREE索引 支持 支持 支持
HASH 索引 不支持 不支持 支持
R-tree 索引 不支持 支持 不支持
Full-text 5.6版本之后支持 支持 不支持

优点

  1. 查找:类似大学图书馆建书目索引,提高数据检索的效率,降低数据库的磁盘IO成本,这也是创建索引最主要的原因。
  2. 通过创建唯一索引,可以保证数据库表中每一行数据的唯一性。
  3. 在实现数据的参考完整性方面,可以加速表和表之间的连接。换句话说,对于有依赖关系的子表和父表联合查询时,可以提高查询速度。
  4. 排序:在使用分组和排序子句进行数据查询时,可以显著减少查询中分组和排序的时间,降低了CPU的消耗。

缺点

增加索引也有许多不利的方面,主要表现在如下几个方面:

  • 创建索引和维护索引要耗费时间,并且随着数据量的增加,所耗费的时间也会增加。
  • 索引需要占磁盘空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间, 存储在磁盘上,如果有大量的索引,索引文件就可能比数据文件更快达到最大文件尺寸。
  • 虽然索引大大提高了查询速度,同时却会降低更新表的速度。当对表中的数据进行增加、删除和修改的时候,索引也要进行动态地维护,这样就降低了数据的维护速度。
  • 因此,选择使用索引时,需要综合考虑索引的优点和缺点。
  • 索引只是提高效率的一个因素,如果MySQL有大数据量的表,就需要花时间研究建立最优秀的索引。

2、为什么使用索引

索引是存储引擎用于快速找到数据记录的一种数据结构,就好比通过书中的目录找到具体的某一页从而定位到一篇文章,Mysql也是一样,进行数据查找时,先看查询条件是否命中某条索引,符合则通过索引查找相关数据,不符合则需要全局扫描,即一条一条的查找记录,直到找到与条件符合的记录

image.png

假如给数据使用二叉搜索树这样的数据结构进行存储,如下图所示

image.png

3、InnoDB中索引的推演

3.1、索引之前的查找

先来看一个精确匹配的例子:

SELECT [列名列表] FROM 表名 WHERE 列名 = xxx;
复制代码

1、在一个页中的查找

假设目前表中的记录比较少,所有的记录都可以被存放到一个页中,在查找记录的时候可以根据搜索条件的不同分为两种情况:

  • 以主键为搜索条件:可以在页目录中使用二分法(因为主键一般是递增的有序的)快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录
  • 以其他列作为搜索条件:因为在数据页中并没有对非主键列建立所谓的页目录,所以我们无法通过二分法快速定位相应的槽,这种情形下只能从最小记录开始依次遍历单链表中的每条记录,然后对比每条记录是不是符合搜索条件。很显然,这种查找的效率是非常低下的

2、在很多页中查找

大多数情况下我们表中存放的记录都是非常多的,需要好多的数据页来存储这些记录。在很多页中查找记录的话可以分为两个步骤:

  1. 定位到记录所在的页
  2. 从所在的页内中查找相应的记录

在没有索引的情况下,不论是根据主键列或者其他列的值进行查找,由于我们并不能快速的定位到记录所在的页,所以只能从第一个页沿着双向链表一直往下找,在每一个页中根据我们上面的查找方式去查找指定的记录。因为要遍历所有的数据页,所以这种方式显然是超级耗时的。如果一个表有一亿条记录呢?此时索引应运而生

3.2、设计索引

建一个表:

mysql> CREATE TABLE index_demo(
    -> c1 INT,
    -> c2 INT,
    -> c3 CHAR(1),
    -> PRIMARY KEY(c1)
    -> ) ROW_FORMAT = Compact; #行格式
复制代码

这个新建的index_demo 表中有2个INT类型的列,1个CHAR(1)类型的列,而且我们规定了c1列为主键,这个表使用Compact行格式来实际存储记录的。这里我们简化了index_demo表的行格式示意图:

image.png

我们只在示意图里展示记录的这几个部分:

  • record_type :记录头信息的一项属性,表示记录的类型, 0 表示普通记录、2 表示最小记录、3 表示最大记录、1 暂时还没用过,下面讲。
  • next_record :记录头信息的一项属性,表示下一条地址相对于本条记录的地址偏移量,我们用箭头来表明下一条记录是谁。
  • 各个列的值:这里只记录在index_demo 表中的三个列,分别是c1 、c2 和c3 。
  • 其他信息:除了上述3种信息以外的所有信息,包括其他隐藏列的值以及记录的额外信息。

将记录格式示意图的其他信息项暂时去掉并把它竖起来的效果就是这样:

image.png

把一些记录放到页里的示意图就是:

image.png

1、一个简单的索引设计方案

我们在根据某个搜索条件查找一些记录时为什么要遍历所有的数据页呢?因为各个页中的记录并没有规律,我们并不知道我们的搜索条件匹配哪些页中的记录,所以不得不依次遍历所有的数据页。所以如果我们想快速的定位到需要查找的记录在哪些数据页中该咋办?我们可以为快速定位记录所在的数据页而建立一个目录,建这个目录必须完成下边这些事:

  • 下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值。
  • 给所有的页建立一个目录项。

所以我们为上边几个页做好的目录就像这样子:

image.png

以页28 为例,它对应目录项2 ,这个目录项中包含着该页的页号28 以及该页中用户记录的最小主键值5 。我们只需要把几个目录项在物理存储器上连续存储(比如:数组),就可以实现根据主键值快速查找某条记录的功能了。比如:查找主键值为20 的记录,具体查找过程分两步:

  1. 先从目录项中根据二分法快速确定出主键值为20 的记录在目录项3 中(因为 12 < 20 < 209 ),它对应的页是页9 。
  2. 再根据前边说的在页中查找记录的方式去页9 中定位具体的记录(主键查找-二分法)。

至此,针对数据页做的简易目录就搞定了。这个目录有一个别名,称为索引。

2、InnoDB中的索引方案

① 迭代1次:目录项纪录的页

我们把前边使用到的目录项放到数据页中的样子就是这样:

image.png

从图中可以看出来,我们新分配了一个编号为30的页来专门存储目录项记录。这里再次强调目录项记录和普通的用户记录的不同点

  • 目录项记录的record_type 值是1,而普通用户记录的record_type 值是0。
  • 目录项记录只有主键值和页的编号两个列,而普通的用户记录的列是用户自己定义的,可能包含很多列,另外还有InnoDB自己添加的隐藏列。
  • 了解:记录头信息里还有一个叫min_rec_mask 的属性,只有在存储目录项记录的页中的主键值最小的目录项记录的min_rec_mask 值为1 ,其他别的记录的min_rec_mask 值都是0 。

相同点:两者用的是一样的数据页,都会为主键值生成Page Directory(页目录),从而在按照主键值进行查找时可以使用二分法来加快查询速度。

现在以查找主键为20 的记录为例,根据某个主键值去查找记录的步骤就可以大致拆分成下边两步:

  1. 先到存储目录项记录的页,也就是页30中通过二分法快速定位到对应目录项,因为12 < 20 <209 ,所以定位到对应的记录所在的页就是页9。
  2. 再到存储用户记录的页9中根据二分法快速定位到主键值为20 的用户记录。

② 迭代2次:多个目录项纪录的页

image.png

从图中可以看出,我们插入了一条主键值为320的用户记录之后需要两个新的数据页:

  • 为存储该用户记录而新生成了页31 。
  • 因为原先存储目录项记录的页30的容量已满(我们前边假设只能存储4条目录项记录),所以不得不需要一个新的页32 来存放页31 对应的目录项。

现在因为存储目录项记录的页不止一个,所以如果我们想根据主键值查找一条用户记录大致需要3个步骤,以查找主键值为20 的记录为例:

  1. 确定目录项记录页:我们现在的存储目录项记录的页有两个,即页30 和页32 ,又因为页30表示的目录项的主键值的范围是[1, 320) ,页32表示的目录项的主键值不小于320 ,所以主键值为20 的记录对应的目录项记录在页30 中。
  2. 通过目录项记录页确定用户记录真实所在的页:在一个存储目录项记录的页中通过主键值定位一条目录项记录的方式说过了。
  3. 在真实存储用户记录的页中定位到具体的记录。

③ 迭代3次:目录项记录页的目录页

image.png

如图,我们生成了一个存储更高级目录项的页33,这个页中的两条记录分别代表页30和页32,如果用户记录的主键值在[1, 320) 之间,则到页30中查找更详细的目录项记录,如果主键值不小于320 的话,就到页32中查找更详细的目录项记录。这就是我们的B+树的初步模型

我们可以用下边这个图来描述它:

image.png

这个数据结构,它的名称是B+树


④ B+Tree

一个B+树的节点其实可以分成好多层,规定最下边的那层(叶子节点),也就是存放我们用户记录的那层为第0层,之后依次往上加。之前我们做了一个非常极端的假设:存放用户记录的页最多存放3条记录,存放目录项记录的页最多存放4条记录。其实真实环境中一个页存放的记录数量是非常大的,假设所有存放用户记录的叶子节点代表的数据页可以存放100条用户记录,所有存放目录项记录的内节点代表的数据页可以存放1000条目录项记录,那么:

  • 如果B+树只有1层,也就是只有1个用于存放用户记录的节点,最多能存放100 条记录。
  • 如果B+树有2层,最多能存放1000×100=10,0000 条记录。
  • 如果B+树有3层,最多能存放1000×1000×100=1,0000,0000 条记录。
  • 如果B+树有4层,最多能存放1000×1000×1000×100=1000,0000,0000 条记录。相当多的记录!!!

你的表里能存放100000000000 条记录吗?所以一般情况下,我们用到的B+树都不会超过4层(树的层次越低,磁盘IO的次数就越少),那我们通过主键值去查找某条记录最多只需要做4个页面内的查找(查找3个目录项页和一个用户记录页),又因为在每个页面内有所谓的Page Directory (页目录),所以在页面内也可以通过二分法实现快速定位记录。

3.3、常见索引概念

索引按照物理实现方式,索引可以分为 2 种:聚簇(聚集)和非聚簇(非聚集)索引。我们也把非聚集索引称为二级索引或者辅助索引。

1、聚簇索引

image.png

聚簇索引并不是一种单独的索引类型,而是一种数据存储方式(所有的用户记录都存储在叶子节点),术语‘聚簇’表示数据行和相邻的键值聚簇的存储在一起。也就是所谓的索引即数据,数据即索引

特点:

  • 使用记录主键值的大小进行记录和页的排序,这包括三个方面的含义:
    • 页内的记录是按照主键的大小顺序排成一个单向链表。
    • 各个存放用户记录的页也是根据页中用户记录的主键大小顺序排成一个双向链表。
    • 存放目录项记录的页分为不同的层次,在同一层次中的页也是根据页中目录项记录的主键大小顺序排成一个双向链表。
  • B+树的叶子节点存储的是完整的用户记录。所谓完整的用户记录,就是指这个记录中存储了所有列的值(包括隐藏列)。

我们把具有这两种特性的B+树称为聚簇索引,所有完整的用户记录都存放在这个聚簇索引的叶子节点处。这种聚簇索引并不需要我们在Mysql语句中显示的使用INDEX语句去创建,InnoDB存储引擎会自动的为我们创建聚簇索引

优点:

  • 数据访问更快,因为聚簇索引将索引和数据保存在同一个B+树中,因此从聚簇索引中获取数据比非聚簇索引更快
  • 聚簇索引对于主键的排序查找和范围查找速度非常快
  • 按照聚簇索引排列顺序,查询显示一定范围数据的时候,由于数据都是紧密相连,数据库不用从多个数据块中提取数据,所以节省了大量的io操作。

缺点:

  • 插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。因此,对于InnoDB表,我们一般都会定义一个自增的ID列为主键
  • 更新主键的代价很高,因为将会导致被更新的行移动。因此,对于InnoDB表,我们一般定义主键为不可更新
  • 二级索引访问需要两次索引查找,第一次找到主键值,第二次根据主键值找到行数据

限制:

  • 对于Mysql目前只有InnoDB支持聚簇索引,而MyISAM不支持聚簇索引
  • 由于数据物理存储排序方式只能有一种,所以每个Mysql的表只能有一个聚簇索引。一般情况下就是该表的主键
  • 如果没有定义主键,InnoD会选择非空的唯一索引代替,如果没有这样的索引,InnoDB会隐式的定义一个主键来作为聚簇索引
  • 为了充分利用聚簇索引的聚簇的特性,所以innoDB表的主键列进来选择有些的顺序id,而不建议使用无序的id,比如UUID、MD5、HASH、字符串列作为主键无法保证数据的顺序增长。

2、二级索引(辅助索引、非聚簇索引)

上面介绍的聚簇索引只能在搜索条件是主键值时才能发挥作用,因为B+树中的数据都是按照主键进行排序的,那如果我们想以别列作为搜索条件该怎么办呢?肯定是不能从头到尾沿着链表依次遍历一遍

答案:我们可以多建立几颗B+树,不同的B+数采用不同的排序规则,比方说我们用C2列的大小作为数据页、页中记录的排序规则(搜索条件),再建一颗B+树,效果如下图所示:

image.png

这个B+树与上面的聚簇索引有几处不同:

  • 使用记录C2列的大小进行记录和页的排序,这包括三个方面的含义:
    • 页内的记录是按照C2值的大小顺序排成一个单向链表
    • 各个存放用户记录的页也是根据页中用户记录的C2列大小顺序排成一个双向链表。
    • 存放目录项记录的页分为不同的层次,在同一层次中的页也是根据页中目录项记录的C2列大小顺序排成一个双向链表
  • B+树的叶子节点存储的并不是完整的用户记录,而是C2列+主键这两个列的值。

以查找C2列的值为4的记录为例:

  1. 确定目录项记录页:根据根页面即页44,可以迅速定位到目录项记录所在的页为42(因为2<4<9)。
  2. 通过目录项记录页确定用户记录真实所在的页:在页42中可以快速定位到实际存储用户记录的页,但是由于C2列并没有唯一性约束(也不是主键,不能像聚簇索引一样),所以C2的值为4的记录可能分布在多个数据页中,又因为2<4<=4,所以确定实际存储用户记录的页在页34和页35中
  3. 在真实存储用户记录的页34和页35中定位到具体的记录。
  4. 但是这个B+树的叶子节点中的记录只存储了C2和C1(主键)两个列,所以我们必须再根据主键值去聚簇索引的B+树中再查找一遍完整的用户记录,这个过程就是回表

概念:回表

我们根据这个以c2列大小排序的B+树只能确定我们要查找记录的主键值,所以如果我们想根据c2列的值查找到完整的用户记录的话,仍然需要到聚簇索引中再查一遍,这个过程称为回表。也就是根据c2列的值查询一条完整的用户记录需要使用到2棵B+树!

回表的含义:根据非主键索引查询到的结果并没有查找的字段值,此时就需要再次根据主键从聚簇索引的根节点开始查找,这样再次查找到的记录才是完成的

问题: 为什么我们还需要一次回表操作呢?直接把完整的用户记录放到叶子节点不OK吗?

回答:如果把完整的用户记录放到叶子节点是可以不用回表,但是太占地方了,比如像表中插入数据,然后又会复制一遍所有数据建立一颗B+树,相当于每建立一颗B+树都需要把所有的用户记录都再拷贝一遍,如果数据量很多,这就有点太浪费存储空间了

因为这种按照非主键列建立的B+树需要一次回表操作才可以定位到完整的用户记录,所以这种B+树也被称为二级索引,或者辅助索引,由于我们使用的是C2列的大小作为B+树的排序规则,所以我们也称这个B+树是为C2列建立的索引

非聚簇索引的存在不影响数据在聚簇索引中的组织,所以一张表可以有多个非聚簇索引。

image.png

小结:聚簇索引与非聚簇索引的原理不同,在使用中也有一些区别:

  • 聚簇索引的叶子节点存储的就是我们的完整的数据记录,非聚簇索引的叶子节点存储的是数据位置(索引值+主键),非聚簇索引不会影响数据表的物理存储顺序
  • 一个表只能有一个聚簇索引,因为只能有一种排序存储的方式,但是可以有多个非聚簇索引,也就是多个索引目录提供数据检索
  • 使用聚簇索引的时候,数据的查询效率高,但如果对数据进行插入、删除、更新等操作,效率会比非聚簇索引低

3、联合索引

我们也可以同时以多个列的大小作为排序规则,也就是同时为多个列建立索引,比方说我们想让B+树按照c2和c3列的大小进行排序,这个包含两层含义:

  • 先把各个记录和页按照c2列进行排序。
  • 在记录的c2列相同的情况下,采用c3列进行排序

注意一点,以c2和c3列的大小为排序规则建立的B+树称为联合索引,本质上也是一个二级索引。它的意思与分别为c2和c3列分别建立索引的表述是不同的,不同点如下:

  • 建立联合索引只会建立如上图一样的1棵B+树。
  • 为c2和c3列分别建立索引会分别以c2和c3列的大小为排序规则建立2棵B+树。

4、全文索引:

MyISAM引擎中实现了这个索引,在5.6版本后InnoDB引擎也支持了全文索引,并且在5.7.6版本后支持了中文索引。全文索引只能在CHAR,VARCHAR,TEXT类型字段上使用,底层使用倒排索引实现。要注意对于大数据量的表,生成全文索引会非常消耗时间也非常消耗磁盘空间。

3.4、InnoDB的B+树索引的注意事项

1、根页面位置万年不动

在之前的介绍里,为了方便理解,都是先画存储用户记录的叶子节点,然后再画出存储目录项记录的内节点。

但实际上 B+ 树的行成过程是这样的:

  • 每当为某个表创建一个 B+ 树索引,都会为这个索引创建一个根节点页面。最开始表里没数据,所以根节点中既没有用户记录,也没有目录项记录。
  • 当往表里插入用户记录时,先把用户记录存储到这个根节点上。
  • 当根节点页空间用完,继续插入记录,此时会将根节点中所有记录复制到一个新页(比如页 a),然后对这个新页进行页分裂,得到另一个新页(页 b)。这时候新插入的记录就根据键值大小(聚簇索引中的主键值,非聚簇索引对应的索引列的值)分配到页 a 和 页 b 中。于是,根节点页就升级成了存储目录项记录的页,就需要把页a 和 页b 对应的目录项记录插入到根节点中。

另外,当一个B+树索引的根节点创建后,它的页号就不会再变。所以只要我们对某个表建立一个索引,那么它的根节点的页号就会被记录到某个地方,后续只要 innodb引擎需要用这个索引,就会从那个固定的地方取出根节点的页号,从而访问这个索引。

2、内节点中目录项记录的唯一性

针对非聚簇所一般来说的,在B+树索引的内节点中,目录项记录的内容是索引列+页号。但是对于二级索引来说,不太严谨。

因为二级索引的索引列可能存在相同的值,比如某张表里有这4条记录,其中c1列是主键 :

img

现在为c2列建立索引(以C2列的值的大小):

img

如果这时候继续插入一条记录,3个列分别为9、1、'c',就会遇到问题:

  • 新记录中 c2的值也是1,那么这个新记录到底应该放在页 4,还是放到页 5?

所以,「为了能让新插入的记录可以找到自己应该到哪个页中,就需要保证B+树同一层内节点的目录项记录是唯一的」

那么,实际上二级索引的内节点的目录项记录应该由 3 个部分组成:

  • 索引列的值
  • 主键值
  • 页号

所以实际上给c2建立的索引应该是这样:

img

现在,当插入新记录9、1、'c'时:

  • 可以先把新记录的 c2 列的值和页 3 中各目录项记录的 c2 列的值进行比较。
  • 如果 c2 列的值相同,就接着比较主键值。

所以,对于二级索引来说,给 c2 列建立这种索引,其实就相当于用c2、c1建立了一个联合索引。先按照二级索引的值进行排序,在二级索引列值相同的情况下,再按照主键值进行排序。

3.一个页面最少存储2条记录

在之前的文章里提到过,B+ 树其实只需要很少的层级就可以轻松存储数亿条记录,查询速度还很快。

这是因为 B+ 树本质上就是一个大的多层级目录。每经过一个目录时都会过滤许多无效的子目录,直到最后访问到存储真正数据的目录。

那么现在不妨设想一下:还是同样的数据量,如果一个大的目录只存放一个子目录,又是什么样子?

  • 目录层级非常多
  • 最后那个存放真正数据的目录中只能存放一条记录

如果是这样的话,这种B+ 树结构就没什么意义了,不能形成一个有效的索引。于是,设计 innoDB的大佬 「为了避免 B+树的层级增长得过高,要求所有数据页都至少可以存放2条记录」

4、MyISAM中的索引方案

4.1、概述

B树(B+树,没有B-这玩意儿)索引适用存储引擎如表所示:

image.png

即使多个存储引擎支持同一种类型的索引,但是他们的实现原理也是不同的。Innodb和MyISAM默认的索引是Btree索引;而Memory默认的索引是Hash索引。

MyISAM引擎使用B+Tree 作为索引结构,叶子节点的data域存放的是数据记录的地址。

4.2、MyISAM索引的原理

下图是MyISAM索引的原理图

我们知道InnoDB中索引即数据,也就是聚簇索引的那棵B+树的叶子节点中已经把所有完整的用户记录都包含了,而MyISAM的索引方案虽然也使用树形结构,但是却将索引和数据分开存储

  • 将表中的记录按照记录的插入顺序单独存储在一个文件中,称之为数据文件。这个文件并不划分为若干个数据页,有多少记录就往这个文件中塞多少记录就成了。插入的时候没有刻意按照主键大小排序,所以并不能在这些数据上使用二分查找,我们可以通过**行号(数据记录地址)**而快速访问到一条记录。
  • 使用MyISAM存储引擎的表会把索引信息另外存储到一个称为索引文件的另一个文件中。MyISAM会单独为表的主键创建一个索引,只不过在索引的叶子节点中存储的不是完整的用户记录,而是主键值 + 行号(数据记录地址)的组合。也就是先通过索引找到对应的行号,再通过行号去找对应的记录!

image.png

这里设表一共有三列,假设我们以Col1为主键,则上图是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。索引的键是否为主键来分为“主索引”和“辅助索引或二级索引”,使用主键键值建立的索引称为“主索引”,其它的称为“辅助索引”。因此主索引只能有一个,辅助索引可以有很多个。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。

如果我们在Col2上建立一个二级索引,则此索引的结构如下图所示:

image.png

同样也是一棵B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录(回表操作)。

4.3、MyISAM 与 InnoDB对比

MyISAM的索引方式都是“非聚簇”的(因为叶子节点存储的都不是完整的数据记录),与InnoDB包含1个聚簇索引是不同的。小结两种引擎中索引的区别:

  • 在InnoDB存储引擎中,我们只需要根据主键值对聚簇索引进行一次查找就能找到对应的记录,而在MyISAM 中却需要进行一次回表操作,意味着MyISAM中建立的索引相当于全部都是二级索引。
  • InnoDB的数据文件本身就是索引文件,而MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。
  • InnoDB的非聚簇索引data域存储相应记录主键的值,而MyISAM索引记录的是地址。换句话说,InnoDB的所有非聚簇索引都引用主键作为data域。
  • MyISAM的回表操作是十分快速的,因为是拿着地址偏移量直接到文件中取数据的,反观InnoDB是通过获取主键之后再去聚簇索引里找记录,虽然说也不慢,但还是比不上直接用地址去访问。
  • InnoDB要求表必须有主键( MyISAM可以没有)。如果没有显式指定,则MySQL系统会自动选择一个可以非空且唯一标识数据记录的列作为主键。如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型。

了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助,例如知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有辅助索引都引用主索引,过长的主索引会令辅助索引变得过大(层级高,效率低下)。再例如,用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一颗B+Tree,非单调的主键会造成在插入新记录时数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。

image.png

5、索引的代价

俗话说,世上没有完美的东西,这句话在索引身上也同样适用,在使用索引之前,我们必须明白在有些时候索引反而会成为拖后腿的存在:索引是个好东西,可不能乱建,它在空间和时间上都会有消耗:

  • 空间上的代价
    • 这个是显而易见的,每建立一个索引都要为它建立一棵B+树,每一棵B+树的每一个节点都是一个数据页,一个页默认会占用16KB的存储空间,一棵很大的B+树由许多数据页组成,那可是很大的一片存储空间呢。
  • 时间上的代价
    • 每次对表中的数据进行增、删、改操作时,都需要去修改各个B+树索引。而且我们讲过,B+树每层节点都是按照索引列的值从小到大的顺序排序而组成了双向链表。不论是叶子节点中的记录,还是内节点中的记录(也就是不论是用户记录还是目录项记录)都是按照索引列的值从小到大的顺序而形成了一个单向链表。
    • 而增、删、改操作可能会对节点和记录的排序造成破坏,所以存储引擎需要额外的时间进行一些记录移位,页面分裂、页面回收啥的操作来维护好节点和记录的排序。如果我们建了许多索引,每个索引对应的B+树都要进行相关的维护操作,这还能不给性能拖后腿么?

所以说,索引虽好可不要“贪杯”哦。

一个表上索引建的越多,就会占用越多的存储空间,在增删改记录的时候性能就越差,为了能够建立又好又少的索引,我们就必须学习这些索引在哪些条件下起作用。即哪些情况我们可以使用索引,哪些情况无法使用索引呢?

6、MySQL数据结构选择的合理性(索引的实现方式)

索引数据结构(主键索引、唯一索引等的实现方式):

  • BTree索引:是一种用于处理多维数据的数据结构,可以对地理数据进行空间索引。不过实际业务场景中使用的比较少。
  • B+树实现:B+树比较适合用作'>'或'<'这样的范围查询,是MySQL中最常使用的一种索引实现
  • Hash索引:是使用散列表来对数据进行索引,Hash方式不像Btree那样需要多次查询才能定位到记录,因此Hash索引的效率高于B-tree,但是不支持范围查找和排序等功能,实际使用的也比较少 。
  • R-Tree索引。

从mysql的角度来说,不得不考虑一个现实的问题就是磁盘IO,如果我们能让索引的数据结构尽量减少硬盘的IO操作,所消耗的时间也就越小。可以说,磁盘的IO操作次数对索引的使用效率至关重要。

查找都是索引操作,一般来说索引非常大,尤其是关系型数据库,当数据量较大的时候,索引的大小有可能几个G甚至更多,为了减少索引在内存的占用,数据库索引是存储在外部磁盘上的。当我们利用索引查询的时候,不可能把整个索引全部加载到内存中,只能逐一加载,那么mysql衡量查询效率的标准就是磁盘IO次数

6.1、全表遍历

这里都懒得说了,在之前对于数据库数据操作中,如SELECT * FROM user WHERE id = '3';我们都是一行一行的逐条查询,也就是所谓的全表扫描;显然这种方式是及其低效的,在频繁的操作下数据库的性能会大幅下降,所以索引就是来解决这个问题的。

6.2、Hash结构

Hash本身是一个函数,又被称为散列函数,它可以帮助我们大幅提升检索数据的效率。

Hash算法是通过某种确定性的算法(比如MD5、SHA1、SHA2、SHA3) 将输入转变为输出。相同的输入永远可以得到相同的输出,假设输入内容有微小偏差,在输出中通常会有不同的结果。

举例:如果你想要验证两个文件是否相同,那么你不需要把两份文件直接拿来比对,只需要让对方把Hash函数计算得到的结果告诉你即可,然后在本地同样对文件进行Hash函数的运算,最后通过比较这两个Hash函数的结果是否相同,就可以知道这两个文件是否相同。

加速查找速度的数据结构,常见的有两类:

  • 树,例如平衡二叉搜索树,查询/插入修改/删除的平均时间复杂度都是O(log2N) ;
  • 哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1) ;

image.png

采用Hash进行检索效率非常高,基本上一次检索就可以找到数据,而B+树需要自顶向下依次查找,多次访问节点才能找到数据,中间需要多次IO操作,从效率來说 Hash比B+树更快。

在哈希的方式下,一个元素k处于h(k)中,即利用哈希函数h,根据关键字k计算出槽的位置。函数h将关键字域映射到哈希表T[0...m-1]的槽位上。

image.png

上图中哈希函数h有可能将两个不同的关键字映射到相同的位置,这叫做碰撞,在数据库中一般采用链接法来解决。在链接法中,将散列到同一槽位的元素放在一个链表中,如下图所示:

image.png

实验:体会数组和hash表的查找方面的效率区别

// 算法复杂度为 O(n)
@Test
public void test1(){
    int[] arr = new int[100000];
    for(int i = 0;i < arr.length;i++){
        arr[i] = i + 1;
    }
    long start = System.currentTimeMillis();
    for(int j = 1; j<=100000;j++){
        int temp = j;
        for(int i = 0;i < arr.length;i++){
            if(temp == arr[i]){
                break;
            }
        }
    }
    long end = System.currentTimeMillis();
    System.out.println("time: " + (end - start)); //time: 823
}
复制代码
//算法复杂度为 O(1)
@Test
public void test2(){
    HashSet<Integer> set = new HashSet<>(100000);
    for(int i = 0;i < 100000;i++){
        set.add(i + 1);
    }
    long start = System.currentTimeMillis();
    for(int j = 1; j<=100000;j++) {
        int temp = j;
        boolean contains = set.contains(temp);
    }
    long end = System.currentTimeMillis();
    System.out.println("time: " + (end - start)); //time: 5
}
复制代码

Hash结构效率高,那为什么索引结构要设计成树型呢?

  • 原因1: Hash 索引仅能满足(=) (<>)IN 这种精确的查询,能够迅速定位到一条记录,时间复杂度为O(1)。如果进行范围查询,哈希型的索引,时间复杂度会退化为O(n);而树型的“有序特性,依然能够保持O(log2N) 的高效率

  • 原因2: Hash 索引还有一个缺陷,数据的存储是没有顺序的,在ORDER BY的情况下,使用Hash索引还需要对数据重新排序。

  • 原因3:对于联合索引的情况,Hash 值是将联合索引键合并后一起来计算的,无法对单独的一个键或者几个索引键进行查询。

  • 原因4:hash索引中存储的就是哈希码(对应每一行记录关键字key的哈希码),对于等值查询来说,通常Hash索引的效率更高,不过也存在一种情况,就是索引列的重复值如果很多,效率就会降低。这是因为遇到Hash冲突时,需要遍历桶中的行指针来进行比较,找到查询的关键字,非常耗时。所以,Hash 索引通常不会用到重复值多的列上,比如列为性别、年龄的情况等。

Hash索引适用存储引擎如表所示:

image.png

Hash索引的适用性:

Hash索引存在着很多限制,相比之下在数据库中B+树索引的使用面会更广,不过也有一些场景采用Hash索引效率更高,比如在键值型(Key-Value) 数据库中,Redis 存储的核心就是Hash表。

MySQL中的Memory存储引擎支持Hash存储,如果我们需要用到查询的临时表时,就可以选择Memory存储引擎,把某个字段设置为Hash索引,比如字符串类型的字段,进行Hash计算之后长度可以缩短到几个字节。当字段的重复度低,而且经常需要进行等值查询的时候,来用Hash索引是个不错的选择。

另外,InnoDB 本身不支持Hash索引,但是提供自适应Hash索引(Adaptive Hash Index)。什么情况下才会使用自适应Hash索引呢?如果某个数据经常被访问,当满足一定条件的时候,就会将这个数据页的地址存放到Hash表中。这样下次查询的时候,就可以直接找到这个页面的所在位置。这样让B+树也具备了Hash索引的优点。

image.png

采用自适应 Hash 索引目的是方便根据 SQL 的查询条件加速定位到叶子节点,特别是当 B+ 树比较深的时候,通过自适应 Hash 索引可以明显提高数据的检索效率。我们可以通过innodb_adaptive_hash_index 变量来查看是否开启了自适应 Hash,比如:

mysql> show variables like '%adaptive_hash_index';
复制代码

image.png

只有memory(内存)存储引擎支持哈希索引,哈希索引用索引列的值计算该值的hashCode,然后在hashCode相应的位置存执该值所在行数据的物理位置,因为使用散列算法,因此访问速度非常快,但是一个值只能对应一个hashCode,而且是散列的分布方式,因此哈希索引不支持范围查找和排序的功能。

6.3、二叉搜索树

如果我们利用二叉树作为索引结构,那么磁盘的IO次数和索引树的高度是相关的。

1、二叉搜索树的特点

  • 一个节点只能有两个子节点,也就是一个节点度不能超过2
  • 左子节点<本节点;右子节点>=本节点,比我大的向右,比我小的向左
  • 二叉树的时间复杂度为 O(n)

2、查找规则

我们先来看下最基础的二叉搜索树(Binary Search Tree),搜索某个节点和插入节点的规则一样,我们假设搜索插入的数值为key:

  1. 如果key大于根节点,则在右子树中进行查找;
  2. 如果key小于根节点,则在左子树中进行查找;
  3. 如果key等于根节点,也就是找到了这个节点,返回根节点即可。

举个例子,我们对数列(34,22, 89, 5, 23, 77, 91) 创造出来的二分查找树如下图所示:

image.png

但是存在特殊的情况,就是有时候二叉树的深度非常大。比如我们给出的数据顺序是(5, 22, 23, 34, 77,89,91),创 造出来的二分搜索树如下图所示:

image.png

上面第二棵树也属于二分查找树,但是性能上已经退化成了一条链表,查找数据的时间复杂度变成了O(n). 你能看出来第一个树的深度是3,也就是说最多只需3次比较,就可以找到节点,而第二个树的深度是7,最多需要7次比较才能找到节点。

为了提高查询效率,就需要减少磁盘IO数。为了减少磁盘IO的次数,就需要尽量降低树的高度,需要把原来“瘦高”的树结构变的“矮胖”,树的每层的分叉越多越好。

6.4、AVL树

为了解决上面二叉查找树退化成链表的问题,人们提出了平衡二叉搜索树(Balanced Binary Tree) ,又称为AVL树(有别于AVL算法),它在二叉搜索树的基础上增加了约束,具有以下性质:

“它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。”

这里说一下,常见的平衡二叉树有很多种,包括了平衡二叉搜索树、红黑树、数堆、仲展树。 平衡二叉搜索树是最早提出来的自平衡二叉搜索树,当我们提到平衡二叉树时一般抬的就是平衡二叉搜索树。事实上,第一棵树就属于平衡二叉搜索树,搜索时间复杂度就是O(1og2n)。

数据查询的时间主要依赖于磁盘IO的次数,如果我们采用二叉树的形式,即使通过平衡二叉搜索树进行了改进,树的深度也是O(log2n),当n比较大时,深度也是比较高的,比如下图的情况:

image.png

每访问一次节点就需要进行一次磁盘IO操作,对于上面的树来说,我们需要进行5次I/O操作。虽然平衡二叉树的效率高,但是树的深度也同样高,这就意味着磁盘IO操作次数多,会影响整体数据查询的效率。

并且无论是普通二叉搜索树,还是AVL树,此处一个节点只能存储一条数据,而一个节点呢,在MySQL里边又对应一个磁盘块,这样我们每次读取一个磁盘块,只能获取一条数据,效率特别的低,所以我们会想到采用B树这种结构来存储。

针对同样的数据,如果我们把二叉树改成 M 叉树(M>2)呢?当 M=3 时,同样的 31 个节点可以由下面的三叉树来进行存储:

image.png

你能看到此时树的高度降低了,当数据量N大的时候,以及树的分叉数M大的时候,M叉树的高度会远小于二叉树的高度(M> 2)。所以,我们需要把树从“瘦高”变"矮胖”。

6.5、B-Tree

B树的英文是Balance Tree,也就是多路平衡查找树。简写为B-Tree (注意横杠表示这两个单词连起来的意思,不是减号)。它的高度远小于平衡二叉树的高度。相比二叉搜索树,高度/深度更低,自然查询效率更高。他是最常见的索引类型,大部分存储引擎都支持 B 树索引

B 树的结构如下图所示:

image.png

【初始化介绍】

一颗b 树,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个data数据项(深蓝色所示)和指针(黄色所示,存储子节点的地址信息),如磁盘块1 包含数据项17 和35,包含指针P1、P2、P3,P1 表示小于17 的磁盘块,P2 表示在17 和35 之间的磁盘块,P3 表示大于35 的磁盘块。真实的数据存在于叶子节点, 即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,可以理解为数据项的key,如17、35 并不真实存在于数据表中。

【查找过程】

如果要查找数据项29,那么首先会把磁盘块1 由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17 和35 之间,锁定磁盘块1 的P2 指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2 指针的磁盘地址把磁盘块3 由磁盘加载到内存,发生第二次IO,29 在26 和30 之间,锁定磁盘块3 的P2 指针,通过指针加载磁盘块8 到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。

真实的情况是,3 层的b树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

B树作为多路平衡查找树,它的每一个节点最多可以包括 M个子节点,M称为B树的阶。每个磁盘块中包括了关键字和子节点的指针。如果一个磁盘块中包括了x个关键字,那么指针数就是x+1。对于一个100阶的B树来说,如果有3层的话最多可以存储约100万的索引数据。对于大量的索弓|数据来说,采用B树的结构是非常适合的,因为树的高度要远小于二叉树的高度。

一个 M 阶的 B 树(M>2)有以下的特性:

  1. 根节点的儿子数的范围是 [2,M]。
  2. 每个中间节点包含 k-1 个关键字和 k 个孩子,孩子的数量 = 关键字的数量 +1,k 的取值范围为 [ceil(M/2), M]
  3. 叶子节点包括 k-1 个关键字(叶子节点没有孩子),k 的取值范围为 [ceil(M/2), M]
  4. 假设中间节点节点的关键字为:Key[1], Key[2], …, Key[k-1],且关键字按照升序排序,即 Key[i]<Key[i+1]。此时 k-1 个关键字相当于划分了 k 个范围,也就是对应着 k 个指针,即为:P[1], P[2], …, P[k],其中 P[1] 指向关键字小于 Key[1] 的子树,P[i] 指向关键字属于 (Key[i-1], Key[i]) 的子树,P[k]指向关键字大于 Key[k-1] 的子树。
  5. 所有叶子节点位于同一层。

上面那张图所表示的 B 树就是一棵 3 阶的 B 树。我们可以看下磁盘块 2,里面的关键字为(8,12),它有 3 个孩子 (3,5),(9,10) 和 (13,15),你能看到 (3,5) 小于 8,(9,10) 在 8 和 12 之间,而 (13,15)大于 12,刚好符合刚才我们给出的特征。

然后我们在来看下如何用 B 树进行查找。假设我们想要查找的关键字是 9 ,那么步骤可以分为以下几步:

  1. 我们与根节点的关键字 (17,35)进行比较,9 小于 17 那么得到指针 P1;
  2. 按照指针 P1 找到磁盘块 2,关键字为(8,12),因为 9 在 8 和 12 之间,所以我们得到指针 P2;
  3. 按照指针 P2 找到磁盘块 6,关键字为(9,10),然后我们找到了关键字 9。

B树缺点

你能看出来在 B 树的搜索过程中,我们比较的次数并不少,但如果把数据读取出来然后在内存中进行比较,这个时间就是可以忽略不计的。而读取磁盘块本身需要进行 I/O 操作,消耗的时间比在内存中进行比较所需要的时间要多,是数据查找用时的重要因素。B 树相比于平衡二叉树来说磁盘 I/O 操作要少,在数据查询中比平衡二叉树效率要高。所以只要树的高度足够低,IO次数足够少,就可以提高查询性能。当数据量较大的时候,同样会导致B树很深,从而增加了磁盘 IO 的次数,进而影响查询效率。

小结:

  1. B树在插入和删除节点的时候如果导致树不平衡,就通过自动调整节点的位置来保持树的自平衡。
  2. 关键字集合分布在整棵树中,即叶子节点和非叶子节点都存放数据。搜索有可能在非叶子节点结束
  3. 其搜索性能等价于在关键字全集内做一次二分查找。

再举例1:

image.png

6.6、B+Tree

B+树也是一种多路搜索树,基于B树做出了改进,主流的DBMS都支持B+树的索引方式,比如MySQL。相比于B-Treey,B+Tree适合文件索引系统 。

image.png

MySQL官网说明:

image.png

B+树特点:

  1. 非叶子结点的子树指针与关键字个数相同;
  2. 非叶子结点的子树指针P[i],指向关键字值属于 [ K[i], K[i+1] ) 的子树(前闭后开,B-树是开区间);
  3. 为所有叶子结点增加一个链指针;
  4. 所有关键字都在叶子结点出现(数据都存在叶子结点);

B+ 树和 B 树的差异:

  1. 有 k 个孩子的节点就有 k 个关键字。也就是孩子数量 = 关键字数,而 B 树中,孩子数量 = 关键字数+1。

  2. B+树中非叶子节点的关键字也会同时存在叶子节点中,并且是在子节点中所有关键字的最大(或最小)。

  3. 非叶子节点仅用于索引,不保存数据记录,跟记录有关的信息都放在叶子节点中。而B树中, 非叶子节点既保存索引,也保存数据记录。

  4. B+树所有关键字都在叶子节点出现,叶子节点构成一个有序链表,而且叶子节点本身按照关键字的大小从小到大顺序链接。

  5. B-树的关键字和记录是放在一起的,叶子节点可以看作外部节点,不包含任何信息;B+树的非叶子节点中只有关键字和指向下一个节点的索引,记录只放在叶子节点中。

  6. 在B-树中,越靠近根节点的记录查找时间越快,只要找到关键字即可确定记录的存在;而B+树中每个记录的查找时间基本是一样的,都需要从根节点走到叶子节点,而且在叶子节点中还要再比较关键字。从这个角度看B-树的性能好像要比B+树好,而在实际应用中却是B+树的性能要好些。因为B+树的非叶子节点不存放实际的数据,这样每个节点可容纳的元素个数比B-树多,树高比B-树小,这样带来的好处是减少磁盘访问次数。

  7. 尽管B+树找到一个记录所需的比较次数要比B-树多,但是一次磁盘访问的时间相当于成百上千次内存比较的时间,因此实际中B+树的性能可能还会好些,而且B+树的叶子节点使用指针连接在一起,方便顺序遍历(例如查看一个目录下的所有文件,一个表中的所有记录等),这也是很多数据库和文件系统使用B+树的缘故。

B 树和 B+ 树都可以作为索引的数据结构,在 MySQL 中采用的是 B+ 树。但B树和B+树各有自己的应用场景,不能说B+树完全比B树好,反之亦然。

B+树和B树的查询过程差不多,但是B+树和B树有个根本的差异在于, B+ 树的中间节点并不直接存储数据。这样的好处都有什么呢?

  1. 首先,B+ 树查询效率更稳定。因为B+树每次只有访问到叶子节点才能找到对应的数据,而在B树中,非叶子节点也会存储数据,这样就会造成查询效率不稳定的情况,有时候访问到了非叶子节点就可以找到关键字而结束,而有时需要访问到叶子节点才能找到关键字。
  2. 其次,B+ 树的查询效率更高。这是因为通常B+树比B树更矮胖(阶数更大,深度更低),查询所需要的磁盘IO也会更少。同样的磁盘页大小,B+ 树可以存储更多的节点关键字。
  3. 不仅是对单个关键字的查询上,在查询范围上, B+树的效率也比B树高。这是因为所有关键字都出现在B+树的叶子节点中,叶子节点之间会有指针,数据又是递增的,这使得我们范围查找可以通过指针连接查找。而在B树中则需要通过中序遍历才能完成查询范围的查找,效率要低很多。

B树和B+树都可以作为索引的数据结构,在MySQL中采用的是B+树。但B树和B+树各有自己的应用场景,不能说B+树完全比B树好,反之亦然。

思考题:为了减少IO,索引树会一次性加载吗?

1、数据库索引是存储在磁盘上的,如果数据量很大,必然导致索引的大小也会很大,超过几个G。 2、当我们利用索引查询时候,是不可能将全部几个G的索引都加载进内存的,我们能做的只能是:逐一加载每一个磁盘页,因为磁盘页对应着索弓|树的节点。

思考题:B+树的存储能力如何?为何说一般查找行记录,最多只需1~3次磁盘IO

InnoDB存储引擎中页的大小为16KB,一般表的主键类型为INT (占用4个字节)或BIGINT (占用8个字节),指针类型也- -般为4或8个字节,也就是说一个页(B+Tree 中的一个节点)中大概存储16KB/8+8B)=1K个键值(因为是估值,为方便计算,这里的K取值为10^3。也就是说一个深度为 3的B+Tree索引可以维护10^3 * 10^3 * 10^3= 10亿条记录。(这里假定一 个数据页也存储10^3条行记录数据了)

实际情况中每个节点可能不能填充满,因此在数据库中,B+Tree 的高度一般都在2~4层。MySQL 的InnoDB存储引擎在设计时是将根节点常驻内存的,也就是说查找某一键值的行记录时最多只需要1~3次磁盘IO操作。

思考题:为什么说B+树比B-树更适合实际应用中操作系统的文件索引和数据库索引?

1、B+树的磁盘读写代价更低

B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说I0读写次数也就降低了。

2、B+树的查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。 所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

思考题:Hash 索引与 B+ 树索引的区别

我们之前讲到过B+树索引的结构,Hash 索引结构和B+树的不同,因此在索引使用上也会有差别。

1、Hash 索引不能进行范围查询,而B+树可以。这是因为Hash索引|指向的数据是无序的,而B+树的叶子节点是个有序的链表。

2、IHash索引不支持联合索引的最左侧原则、(即联合索引的部分索引无法使用) ,而B+树可以。对于联合索引来说,Hash 索引在计算Hash值的时候是将索引键合并后再一起计算 Hash值,所以不会针对每个索引单独计算Hash值。因此如果用到联合索引的一个或者几个索引时,联合索引|无法被利用。

3、Hash 索引不支持ORDER BY排序,因为Hash索引|指向的数据是无序的,因此无法起到排序优化的作 用,而B+树索引数据是有序的,可以起到对该字段ORDER BY排序优化的作用。同理,我们也无法用Hash 索引进行模糊查询,而B+树使用LIKE进行模糊查询的时候,LIKE 后面后模糊查询(比如%结尾)的话就可 以起到优化作用。

4、InnoDB 不支持哈希索引

思考题:Hash 索引与 B+ 树索引是在建索引的时候手动指定的吗?

如果使用的是MySQL的话,我们需要了解MySQL的存储引擎都支持哪些索引结构,如下图所示(参考来源dev.mysql.com/doc/refman/…

image.png

你能看到,针对InnoDB和MyISAM存储引擎,都会默认采用B+树索引,无法使用Hash索引。InnoDB 提供的自适应Hash是不需要手动指定的。如果是Memory/Heap和NDB存储引擎,是可以进行选择Hash索引的。

6.7、R树

R-Tree在MySQL很少使用,仅支持geometry数据类型,支持该类型的存储引擎只有myisam、bdb、innodb、ndb、archive几种。举个R树在现实领域中能够解决的例子:查找20英里以内所有的餐厅。如果没有R树你会怎么解决?一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中,一个字段记录经度,另一个字段记录纬度。这样的话我们就需要遍历所有的餐厅获取其位置信息,然后计算是否满足要求。

如果一个地区有100家餐厅的话,我们就要进行100次位置计算操作了,如果应用到谷歌、百度地图这种超大数据库中,这种方法便必定不可行了。R树就很好的解决了这种高维空间搜索问题。它把B树的思想很好的扩展到了多维空间,采用了B树分割空间的思想,并在添加、删除操作时采用合并、分解结点的方法,保证树的平衡性。因此,R树就是一棵用来存储高维数据的平衡树。相对于B-Tree,R-Tree的优势在于范围查找。

image.png

6.8、小结

使用索引可以帮助我们从海量的数据中快速定位想要查找的数据,不过索引也存在一些不足,比如占用存储空间、降低数据库写操作的性能等,如果有多个索引还会增加索引选择的时间。当我们使用索引时,需要平衡索引的利(提升查询效率)和弊(维护索弓|所需的代价)。在实际工作中,我们还需要基于需求和数据本身的分布情况来确定是否使用索引,尽管索引不是万能的,但数据量大的时候不使用索引是不可想象的,毕竟索引的本质,是帮助我们提升数据检索的效率。

6.9、附录:算法的时间复杂度

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。

image.png

7、面试题

在MySQL中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,比如MyISAM和InnoDB存储引擎。

MyISAM索引实现:

MyISAM存储引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。MyISAM的索引方式也叫做“非聚集”的,之所以这么称呼是为了与InnoDB的聚集索引区分。

InnoDB索引实现:

虽然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同。

  • 第一个重大区别是:InnoDB的数据文件本身就是索引文件。
  • 第二个与MyISAM索引的不同是:InnoDB的辅助索引data域存储相应记录主键的值而不是地址。聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录(回表)。

其实,数据库索引的实现可以采用红黑树,B-Tree树数据结构。但是为什么实际上采用的B+Tree呢?

这要从计算机存储原理和操作系统相关知识说起。因为数据表的索引比较大,不能常驻内存,所以以文件形式存储在磁盘中。所以当查询数据的时候就需要I/O操作。高效率查询的目标是较少I/O次数。一次I/O一般读取一页(一般为4k)大小的数据(局部性原理)。如此,在B-树中,每当申请一个新结点时,就以页的大小来申请。也就是说一次I/o可以读取一个一个结点(包含很多key)的数据;而在红黑树结构结构中,逻辑相邻的结点物理上不一定相邻,就是说,读取同等的数据需要多次I/O。所以选择B-树效率更好。

那为何最终选了B+树呢?

因为B+树内节点去掉了data域,因此可以拥有更大的出度,就是说一个结点可以存储更多的内结点,那么I/O效率更高。

了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助,例如知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有辅助索引都引用主索引,过长的主索引会令辅助索引变得过大。再例如,用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一颗B+Tree,非单调的主键会造成在插入新记录时数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。

聚集索引与非聚集索引之分:

  • InnoDB是聚集索引,因为它的B+树的叶结点包含了完整的数据记录。而MyISAM方式B+树的叶结点只是存储了数据的地址,故称为非聚集索引。

索引使用策略及优化

  • MySQL的优化主要分为结构优化(Scheme optimization)和查询优化(Query optimization)。

8、聚簇索引和非聚簇索引更官方话语

聚集索引:聚集索引表记录的排列顺序和索引的排列顺序一致(索引即数据,数据即索引),所以查询效率快,只要找到第一个索引值记录,其余就连续性的记录在物理也一样连续存放。聚集索引对应的缺点就是修改慢,因为为了保证表中记录的物理和索引顺序一致,在记录插入的时候,会对数据页重新排序。即主要描述的是物理上的存储。

非聚集索引:非聚集索引制定了表中记录的逻辑顺序,但是记录的物理和索引不一定一致,两种索引都采用B+树结构,非聚集索引的叶子层并不和实际数据页相重叠,而采用叶子层包含一个指向表中的记录在数据页中的指针方式。非聚集索引层次多,不会造成数据重排。

聚集索引和非聚集索引的根本区别是表记录的排列顺序和与索引的排列顺序是否一致。

索引是通过二叉树的数据结构来描述的,我们可以这么理解聚簇索引:索引的叶节点就是数据节点。而非聚簇索引的叶节点仍然是索引节点,只不过有一个指针指向对应的数据块。

猜你喜欢

转载自juejin.im/post/7062310700353486884