《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合

《MATLAB 神经网络43个案例分析》:第3章 遗传算法优化BP神经网络——非线性函数拟合

1. 前言

《MATLAB 神经网络43个案例分析》是MATLAB技术论坛(www.matlabsky.com)策划,由王小川老师主导,2013年北京航空航天大学出版社出版的关于MATLAB为工具的一本MATLAB实例教学书籍,是在《MATLAB神经网络30个案例分析》的基础上修改、补充而成的,秉承着“理论讲解—案例分析—应用扩展”这一特色,帮助读者更加直观、生动地学习神经网络。

《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析》还介绍了MATLAB R2012b中神经网络工具箱的新增功能与特性,如神经网络并行计算、定制神经网络、神经网络高效编程等。

近年来随着人工智能研究的兴起,神经网络这个相关方向也迎来了又一阵研究热潮,由于其在信号处理领域中的不俗表现,神经网络方法也在不断深入应用到语音和图像方向的的各种应用当中,本文结合书中案例,对其进行仿真实现,也算是进行一次重新学习,希望可以温故知新,加强并提升自己对神经网络这一方法在各领域中应用的理解与实践。自己正好在多抓鱼上入手了这本书,下面开始进行仿真示例,主要以介绍各章节中源码应用示例为主,本文主要基于MATLAB2015b(32位)平台仿真实现,这是本书的第三章通过遗传算法优化BP神经网络的实例,话不多说,开始!

2. MATLAB 仿真示例

打开MATLAB,点击“主页”,点击“打开”,找到示例文件
在这里插入图片描述
选中Genetic.m,点击“打开”,依次检查源码文件如下;

适应度函数fun.m

function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%该函数用来计算适应度值
%x          input     个体
%inputnum   input     输入层节点数
%outputnum  input     隐含层节点数
%net        input     网络
%inputn     input     训练输入数据
%outputn    input     训练输出数据
%error      output    个体适应度值

%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);


%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
 
%网络权值赋值
net.iw{
    
    1,1}=reshape(w1,hiddennum,inputnum);
net.lw{
    
    2,1}=reshape(w2,outputnum,hiddennum);
net.b{
    
    1}=reshape(B1,hiddennum,1);
net.b{
    
    2}=B2;

%网络训练
net=train(net,inputn,outputn);

an=sim(net,inputn);

error=sum(abs(an-outputn));

选择操作函数select.m

function ret=select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% ret         output : 经过选择后的种群

%根据个体适应度值进行排序
fitness1=10./individuals.fitness;

sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
index=[]; 
for i=1:sizepop   %转sizepop次轮盘
    pick=rand;
    while pick==0    
        pick=rand;        
    end
    for j=1:sizepop    
        pick=pick-sumf(j);        
        if pick<0        
            index=[index j];            
            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体
        end
    end
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

交叉操作函数Cross.m

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom                 input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体
for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
     % 随机选择两个染色体进行交叉
     pick=rand(1,2);
     while prod(pick)==0
         pick=rand(1,2);
     end
     index=ceil(pick.*sizepop);
     % 交叉概率决定是否进行交叉
     pick=rand;
     while pick==0
         pick=rand;
     end
     if pick>pcross
         continue;
     end
     flag=0;
     while flag==0
         % 随机选择交叉位
         pick=rand;
         while pick==0
             pick=rand;
         end
         pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
         pick=rand; %交叉开始
         v1=chrom(index(1),pos);
         v2=chrom(index(2),pos);
         chrom(index(1),pos)=pick*v2+(1-pick)*v1;
         chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
         flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
         flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
         if   flag1*flag2==0
             flag=0;
         else flag=1;
         end    %如果两个染色体不是都可行,则重新交叉
     end
end
ret=chrom;

变异操作函数

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% opts                  input  : 变异方法的选择
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% bound                 input  : 每个个体的上届和下届
% maxgen                input  :最大迭代次数
% num                   input  : 当前迭代次数
% ret                   output : 变异后的染色体

for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
    %但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
    % 随机选择一个染色体进行变异
    pick=rand;
    while pick==0
        pick=rand;
    end
    index=ceil(pick*sizepop);
    % 变异概率决定该轮循环是否进行变异
    pick=rand;
    if pick>pmutation
        continue;
    end
    flag=0;
    while flag==0
        % 变异位置
        pick=rand;
        while pick==0      
            pick=rand;
        end
        pos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
    
        pick=rand; %变异开始     
        fg=(rand*(1-num/maxgen))^2;
        if pick>0.5
            chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;
        else
            chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;
        end   %变异结束
        flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性
    end
end
ret=chrom;

遗传算法主函数Genetic.m源码如下:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%功能:该代码为基于遗传算法神经网络的预测代码
%环境:Win7,Matlab2015b
%Modi: C.S
%时间:2022-06-08
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 清空环境变量
clc
clear
% 
%% 网络结构建立
%读取数据
tic
load data input output

%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;

%训练数据和预测数据
input_train=input(1:1900,:)';
input_test=input(1901:2000,:)';
output_train=output(1:1900)';
output_test=output(1901:2000)';

%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);

%构建网络
net=newff(inputn,outputn,hiddennum);

%% 遗传算法参数初始化
maxgen=20;                         %进化代数,即迭代次数
sizepop=10;                        %种群规模
pcross=[0.2];                       %交叉概率选择,01之间
pmutation=[0.1];                    %变异概率选择,01之间

%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;

lenchrom=ones(1,numsum);        
bound=[-3*ones(numsum,1) 3*ones(numsum,1)];    %数据范围

%------------------------------------------------------种群初始化--------------------------------------------------------
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体
%初始化种群
for i=1:sizepop
    %随机产生一个种群
    individuals.chrom(i,:)=Code(lenchrom,bound);    %编码(binary和grey的编码结果为一个实数,float的编码结果为一个实数向量)
    x=individuals.chrom(i,:);
    %计算适应度
    individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);   %染色体的适应度
end
FitRecord=[];
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]; 
 
%% 迭代求解最佳初始阀值和权值
% 进化开始
for i=1:maxgen
    i
    % 选择
    [sizepop,~] = size(individuals.chrom);
    individuals=select(individuals,sizepop); 
    avgfitness=sum(individuals.fitness)/sizepop;
    %交叉
    individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
    % 变异
    individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,i,maxgen,bound);
 
    % 计算适应度 
    for j=1:sizepop
        x=individuals.chrom(j,:); %解码
        individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);   
    end
    
  %找到最小和最大适应度的染色体及它们在种群中的位置
    [newbestfitness,newbestindex]=min(individuals.fitness);
    [worestfitness,worestindex]=max(individuals.fitness);
    % 代替上一次进化中最好的染色体
    if bestfitness>newbestfitness
        bestfitness=newbestfitness;
        bestchrom=individuals.chrom(newbestindex,:);
    end
    individuals.chrom(worestindex,:)=bestchrom;
    individuals.fitness(worestindex)=bestfitness;
    
    avgfitness=sum(individuals.fitness)/sizepop;
    
    trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
    FitRecord=[FitRecord;individuals.fitness];
end

%% 遗传算法结果分析 
figure(1)
[r c]=size(trace);
plot([1:r]',trace(:,2),'b--');
title(['适应度曲线  ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');
legend('平均适应度','最佳适应度');
disp('适应度                   变量');

%% 把最优初始阀值权值赋予网络预测
% %用遗传算法优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);

net.iw{
    
    1,1}=reshape(w1,hiddennum,inputnum);
net.lw{
    
    2,1}=reshape(w2,outputnum,hiddennum);
net.b{
    
    1}=reshape(B1,hiddennum,1);
net.b{
    
    2}=B2;

%% BP网络训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;

%网络训练
[net,per2]=train(net,inputn,outputn);

%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
toc
% web browser www.matlabsky.com

添加完毕,点击“运行”,开始仿真,输出仿真结果如下:
在这里插入图片描述
点击Performance可得:
在这里插入图片描述
点击Training State可得:
在这里插入图片描述
点击Regression可得:
在这里插入图片描述
主函数输出适应度曲线如下:
在这里插入图片描述

3. 小结

遗传算法(Genetic Algorithms,GA),顾名思义就是参考生物学中的遗传学为基础,进行进化选择,变异选择等操作,它是1962年美国人提出,模拟自然界遗传和生物进化论而成的一种并行随机搜索最优化方法。

将遗传算法结合BP神经网络应用到非线性函数拟合,通过不断迭代进化,可以提高BP神经网络权值阈值的适应度,从而得到更优的分类效果。本示例仅供大家学习参考,对本章内容感兴趣或者想充分学习了解的,建议去研习书中第三章节的内容。后期会对其中一些知识点在自己理解的基础上进行补充,欢迎大家一起学习交流。

本书源码仿真未能成功跑通,总是出现维度报错,主要参考的是下面这位同学的仿真实现,并且他对整个仿真实现过程进行了详细的介绍,感兴趣的同学可以前往参考,他好像也对本书的一系列仿真进行了实现,可以关注一波。

参考:遗传算法优化BP神经网络

猜你喜欢

转载自blog.csdn.net/sinat_34897952/article/details/125193955