OpenGL入门学习笔记(一)——简单实现FFT海洋

一、前言

文章不赘述OpenGL的使用入门,使用入门请参考LearnOpenGL CN(https://learnopengl-cn.github.io/)。

文章主要参考:
【1】【学习笔记】Unity 基于GPU FFT海洋的实现-理论篇(https://zhuanlan.zhihu.com/p/95482541)
【2】【学习笔记】Unity 基于GPU FFT海洋的实现-实践篇(https://zhuanlan.zhihu.com/p/96811613)
【3】fft海面模拟(二)(https://zhuanlan.zhihu.com/p/64726720)
【4】海面模拟以及渲染(计算着色器、FFT、Reflection Matrix)(https://blog.csdn.net/xiewenzhao123/article/details/79111004)
【5】一小时学会快速傅里叶变换(Fast Fourier Transform)(https://zhuanlan.zhihu.com/p/31584464)
【6】真实感水体渲染技术总结(https://zhuanlan.zhihu.com/p/95917609?utm_source=qq)

二、FFT海洋

基于快速傅立叶变换(Fast Fourier Transform,FFT)的水体渲染方法是目前广泛使用的一种海洋表面渲染方案。

三、代码

const int N = 512;
const int L = 512;
const float spacing = 10.0;
const int BUTTERFLY_STEPS = std::log2(N);
const int LOCAL_WORK_GROUP_SIZE = 32;
const int GLOBAL_WORK_GROUP_SIZE = N / LOCAL_WORK_GROUP_SIZE;

const float G = 9.81;
const float A = 0.001;//phillips谱参数,影响波浪高度
const float PI = 3.141592653589;
const glm::vec2 WindDir = glm::vec2(1.0, 2.0);//风向

int drawTest();

float GeneratePhillipsSpectrum(glm::vec2 k);
float dispersion(glm::vec2 k);

glm::vec2 ComputeGaussianRandom(int x, int y);
glm::vec2 gaussian(int x, int y);
unsigned int wangHash(unsigned int seed);
float rand(unsigned int& rngState);
float DonelanBannerDirectionalSpreading(glm::vec2 k);

int drawTest()
{
    
    
	auto window = initWindow();

	Ogle::Shader* heightShader = new Ogle::Shader("./0_1_GenerateHeightSpectrum.comp");
	Ogle::Shader* displacementShader = new Ogle::Shader("./0_2_GenerateXZDisplacement.comp");
	Ogle::Shader* normalShader = new Ogle::Shader("./0_3_GenerationNormalBubbles.comp");
	Ogle::Shader* fftHorShader = new Ogle::Shader("./0_4_FFTHorizontal.comp");
	Ogle::Shader* fftVerShader = new Ogle::Shader("./0_5_FFTVertical.comp");
	Ogle::Shader* drawShader = new Ogle::Shader("./0_DrawTest.vert", "./0_DrawTest.frag");

	float* vertices = new float[N * N * 5];
	float sX = -(N - 1) * spacing / 2.0;
	float sZ = (N - 1) * spacing / 2.0;
	float vX = 0.0;
	float vY = 0.0;
	for (int i = 0; i < N; i++)
	{
    
    
		for (int j = 0; j < N; j++)
		{
    
    
			vertices[i * N * 5 + j * 5] = sX;
			vertices[i * N * 5 + j * 5 + 1] = 0.0;
			vertices[i * N * 5 + j * 5 + 2] = sZ;

			vertices[i * N * 5 + j * 5 + 3] = vX;
			vertices[i * N * 5 + j * 5 + 4] = vY;

			sX += spacing;

			vX += 1.0 / (N - 1);
		}
		sX = -(N - 1) * spacing / 2.0;
		sZ -= spacing;

		vX = 0.0;
		vY += 1.0 / (N - 1);
	}

	unsigned int* indices = new unsigned int[(N - 1) * (N - 1) * 6];
	for (int i = 0; i < N - 1; i++)
	{
    
    
		for (int j = 0; j < N - 1; j++)
		{
    
    
			indices[i * (N - 1) * 6 + j * 6] = i * N + j;
			indices[i * (N - 1) * 6 + j * 6 + 1] = i * N + j + 1;
			indices[i * (N - 1) * 6 + j * 6 + 2] = (i + 1) * N + j;
			indices[i * (N - 1) * 6 + j * 6 + 3] = i * N + j + 1;
			indices[i * (N - 1) * 6 + j * 6 + 4] = (i + 1) * N + j;
			indices[i * (N - 1) * 6 + j * 6 + 5] = (i + 1) * N + j + 1;
		}
	}

	unsigned int VAO;
	glGenVertexArrays(1, &VAO);
	glBindVertexArray(VAO);
	unsigned int VBO;
	glGenBuffers(1, &VBO);
	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	glBufferData(GL_ARRAY_BUFFER, N * N * 5 * 4, vertices, GL_STATIC_DRAW);

	unsigned int EBO;
	glGenBuffers(1, &EBO);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, (N - 1) * (N - 1) * 6 * 4, indices, GL_STATIC_DRAW);

	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
	glEnableVertexAttribArray(0);
	glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
	glEnableVertexAttribArray(1);



	///
	float *h0Data = new float[N * N * 2];
	float *h0ConjData = new float[N * N * 2];
	for (int i = 0; i < N; i++) 
	{
    
    
		for (int j = 0; j < N; j++) 
		{
    
    
			//glm::vec2 k(2.0f * PI * (i - N / 2) / L, 2.0f * PI * (j - N / 2) / L);
			glm::vec2 k(2.0f * PI * i / N - PI, 2.0f * PI * j / N - PI);

			glm::vec2 gaussian = ComputeGaussianRandom(i, j);
			glm::vec2 hTilde0 = gaussian * std::sqrt(std::abs(GeneratePhillipsSpectrum(k) * DonelanBannerDirectionalSpreading(k)) / 2.0f);
			//gaussian = GenerateGaussianRandom();//有可能需要不同的随机数
			glm::vec2 hTilde0Conj = gaussian * std::sqrt(std::abs(GeneratePhillipsSpectrum(-k) * DonelanBannerDirectionalSpreading(-k)) / 2.0f);
			hTilde0Conj.y *= -1.0f;//共轭所以y为负

			h0Data[i * 2 * N + j * 2] = hTilde0.x;
			h0Data[i * 2 * N + j * 2 + 1] = hTilde0.y;

			h0ConjData[i * 2 * N + j * 2] = hTilde0Conj.x;
			h0ConjData[i * 2 * N + j * 2 + 1] = hTilde0Conj.y;
		}
	}

	//存储H0
	unsigned int g_textureH0;
	glGenTextures(1, &g_textureH0);
	//glActiveTexture(GL_TEXTURE0); 
	glBindTexture(GL_TEXTURE_2D, g_textureH0);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, h0Data);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

	//存储H0Conj
	unsigned int g_textureH0Conj;
	glGenTextures(1, &g_textureH0Conj);
	glBindTexture(GL_TEXTURE_2D, g_textureH0Conj);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, h0ConjData);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

	//存储Ht
	unsigned int g_textureHt;
	glGenTextures(1, &g_textureHt);
	glBindTexture(GL_TEXTURE_2D, g_textureHt);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

	//存储xz便宜图谱
	unsigned int g_textureDisplacement[2];
	glGenTextures(1, &g_textureDisplacement[0]);//x
	glBindTexture(GL_TEXTURE_2D, g_textureDisplacement[0]);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	glGenTextures(1, &g_textureDisplacement[1]);//z
	glBindTexture(GL_TEXTURE_2D, g_textureDisplacement[1]);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

	//存储IFFT后的xyz偏移结果
	unsigned int g_textureResult[3];
	glGenTextures(1, &g_textureResult[0]);//x
	glBindTexture(GL_TEXTURE_2D, g_textureResult[0]);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	glGenTextures(1, &g_textureResult[1]);//y
	glBindTexture(GL_TEXTURE_2D, g_textureResult[1]);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	glGenTextures(1, &g_textureResult[2]);//z
	glBindTexture(GL_TEXTURE_2D, g_textureResult[2]);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

	//临时存储
	unsigned int g_textureTemp;
	glGenTextures(1, &g_textureTemp);
	glBindTexture(GL_TEXTURE_2D, g_textureTemp);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

	//存储法线向量值
	unsigned int g_textureNormal;
	glGenTextures(1, &g_textureNormal);
	glBindTexture(GL_TEXTURE_2D, g_textureNormal);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, N, N, 0, GL_RGBA, GL_FLOAT, 0);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	
	//使用GPU计算FFT需要先把第一次迭代的索引计算好例:N=8时 索引为(0,4) (2,6) (1,5) (3,7)
	float *butterflyIndices = new float[N];
	for (int i = 0; i < N / 4; i++)
	{
    
    
		butterflyIndices[i * 2] = i * 2;
		butterflyIndices[i * 2 + 1] = i * 2 + N / 2;

		butterflyIndices[i * 2 + N / 2] = i * 2 + 1;
		butterflyIndices[i * 2 + N / 2 + 1] = i * 2 + N / 2 + 1;
	}

	//将计算好的索引值存储到贴图当中
	unsigned int g_textureIndices;
	glGenTextures(1, &g_textureIndices);
	glBindTexture(GL_TEXTURE_1D, g_textureIndices);
	glTexImage1D(GL_TEXTURE_1D, 0, GL_R32F, N, 0, GL_RED, GL_FLOAT, butterflyIndices);
	glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	///



	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindVertexArray(0);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

	glEnable(GL_DEPTH_TEST);

	while (!glfwWindowShouldClose(window))
	{
    
    
		float currentFrame = static_cast<float>(glfwGetTime());
		deltaTime = currentFrame - lastFrame;
		lastFrame = currentFrame;

		float timeValue = glfwGetTime();

		processInput(window);

		glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);//同时清除深度缓冲区



		/
		//使用HeightSpectrum计算着色器计算高度
		glUseProgram(heightShader->id);
		glBindImageTexture(0, g_textureH0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureH0Conj, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureHt, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		//传递运行时间
		glUniform1f(glGetUniformLocation(heightShader->id, "time"), timeValue);
		//创建一个N*N大小的工作组,即同时计算所有的顶点高度值
		glDispatchCompute(GLOBAL_WORK_GROUP_SIZE, GLOBAL_WORK_GROUP_SIZE, 1);
		//确保所有的数据都写入到贴图里了
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

		//使用XZDisplacement计算着色器计算xz方向偏移
		glUseProgram(displacementShader->id);
		glBindImageTexture(0, g_textureHt, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureDisplacement[0], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureDisplacement[1], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		//创建一个N*N大小的工作组,即同时计算所有的顶点高度值
		glDispatchCompute(GLOBAL_WORK_GROUP_SIZE, GLOBAL_WORK_GROUP_SIZE, 1);
		//确保所有的数据都写入到贴图里了
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

		//使用FFT计算着色器对结果进行逆变换
		//y
		//Horizontal
		glUseProgram(fftHorShader->id);
		glUniform1i(glGetUniformLocation(fftHorShader->id, "u_steps"), BUTTERFLY_STEPS);
		//绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图
		glBindImageTexture(0, g_textureHt, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureTemp, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F);
		// 先对每一行进行逆变换
		glDispatchCompute(1, N, 1);
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

		//Vertical
		glUseProgram(fftVerShader->id);
		glUniform1i(glGetUniformLocation(fftVerShader->id, "u_steps"), BUTTERFLY_STEPS);
		//绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图
		glBindImageTexture(0, g_textureTemp, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureResult[1], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F);
		// 再对每一列进行逆变换
		glDispatchCompute(N, 1, 1);
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

		//使用FFT计算着色器对结果进行逆变换
		//x
		//Horizontal
		glUseProgram(fftHorShader->id);
		glUniform1i(glGetUniformLocation(fftHorShader->id, "u_steps"), BUTTERFLY_STEPS);
		//绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图
		glBindImageTexture(0, g_textureDisplacement[0], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureTemp, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F);
		// 先对每一行进行逆变换
		glDispatchCompute(1, N, 1);
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

		//Vertical
		glUseProgram(fftVerShader->id);
		glUniform1i(glGetUniformLocation(fftVerShader->id, "u_steps"), BUTTERFLY_STEPS);
		//绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图
		glBindImageTexture(0, g_textureTemp, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureResult[0], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F);
		// 再对每一列进行逆变换
		glDispatchCompute(N, 1, 1);
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

		//使用FFT计算着色器对结果进行逆变换
		//z
		//Horizontal
		glUseProgram(fftHorShader->id);
		glUniform1i(glGetUniformLocation(fftHorShader->id, "u_steps"), BUTTERFLY_STEPS);
		//绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图
		glBindImageTexture(0, g_textureDisplacement[1], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureTemp, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F);
		// 先对每一行进行逆变换
		glDispatchCompute(1, N, 1);
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

		//Vertical
		glUseProgram(fftVerShader->id);
		glUniform1i(glGetUniformLocation(fftVerShader->id, "u_steps"), BUTTERFLY_STEPS);
		//绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图
		glBindImageTexture(0, g_textureTemp, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureResult[2], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F);
		// 再对每一列进行逆变换
		glDispatchCompute(N, 1, 1);
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);

		//更新法线向量
		glUseProgram(normalShader->id);
		glBindImageTexture(0, g_textureResult[0], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(1, g_textureResult[1], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(2, g_textureResult[2], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F);
		glBindImageTexture(3, g_textureNormal, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RGBA32F);
		glDispatchCompute(GLOBAL_WORK_GROUP_SIZE, GLOBAL_WORK_GROUP_SIZE, 1);
		glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
		/



		glUseProgram(drawShader->id);
		
		glUniform3f(glGetUniformLocation(drawShader->id, "lightColor"), 1.0, 1.0, 1.0);
		glUniform3f(glGetUniformLocation(drawShader->id, "lightPos"), 100.0, 300.0, 100.0);
		glUniform3f(glGetUniformLocation(drawShader->id, "viewPos"), camera.Position.x, camera.Position.y, camera.Position.z);

		glm::mat4 model = glm::mat4(1.0);
		glm::mat4 view = glm::mat4(1.0);
		glm::mat4 projection = glm::mat4(1.0);
		view = camera.GetViewMatrix();
		projection = glm::perspective(glm::radians(camera.Zoom), 800.0f / 600.0f, 0.1f, 10000.0f);
		glUniformMatrix4fv(glGetUniformLocation(drawShader->id, "model"), 1, GL_FALSE, glm::value_ptr(model));
		glUniformMatrix4fv(glGetUniformLocation(drawShader->id, "view"), 1, GL_FALSE, glm::value_ptr(view));
		glUniformMatrix4fv(glGetUniformLocation(drawShader->id, "projection"), 1, GL_FALSE, glm::value_ptr(projection));

		/
		//将波浪高度贴图绑定在GL_TEXTURE0
		glActiveTexture(GL_TEXTURE0);
		glBindTexture(GL_TEXTURE_2D, g_textureResult[0]);//x
		glActiveTexture(GL_TEXTURE1);
		glBindTexture(GL_TEXTURE_2D, g_textureResult[1]);//y
		glActiveTexture(GL_TEXTURE2);
		glBindTexture(GL_TEXTURE_2D, g_textureResult[2]);//z
		glActiveTexture(GL_TEXTURE3);
		glBindTexture(GL_TEXTURE_2D, g_textureNormal);
		/

		glBindVertexArray(VAO);
		//glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
		glDrawElements(GL_TRIANGLES, (N - 1) * (N - 1) * 6, GL_UNSIGNED_INT, (void*)0);

		glfwSwapBuffers(window);
		glfwPollEvents();
	}

	glDeleteVertexArrays(1, &VAO);
	glDeleteBuffers(1, &VBO);
	glDeleteBuffers(1, &EBO);
	glDeleteProgram(drawShader->id);

	glfwTerminate();
	return 0;
}

float GeneratePhillipsSpectrum(glm::vec2 k)
{
    
    
	float kLength = glm::length(k);
	kLength = std::max(0.001f, kLength);
	//kLength = 1;
	float kLength2 = kLength * kLength;
	float kLength4 = kLength2 * kLength2;

	//
	float k_dot_w = glm::dot(glm::normalize(k), glm::normalize(WindDir));
	float k_dot_w2 = k_dot_w * k_dot_w;
	//

	float windLength = glm::length(WindDir);
	float l = windLength * windLength / G;
	float l2 = l * l;

	//修正因子(Phillips在|k|较大时收敛性较差,使用最后的exp修正参数来抑制较小波浪)
	float damping = 0.001;
	float L2 = l2 * damping * damping;

	//Phillips谱
	return  A * exp(-1.0f / (kLength2 * l2)) / kLength4 /** k_dot_w2*/ * exp(-kLength2 * L2);
	//*k_dot_w2为方向拓展,可以替换为Donelan-Banner定向传播*
}

float dispersion(glm::vec2 k)
{
    
    
	return std::sqrt(G * glm::length(k));
}



///
glm::vec2 ComputeGaussianRandom(int x, int y)
{
    
    
	glm::vec2 g = gaussian(x, y);

	return g;
}

glm::vec2 gaussian(int x, int y)
{
    
    
	//均匀分布随机数
	unsigned int rngState = wangHash(y * N + x);
	float x1 = rand(rngState);
	float x2 = rand(rngState);

	x1 = std::max(1e-6f, x1);
	x2 = std::max(1e-6f, x2);
	//计算两个相互独立的高斯随机数
	float g1 = sqrt(-2.0f * log(x1)) * cos(2.0f * PI * x2);
	float g2 = sqrt(-2.0f * log(x1)) * sin(2.0f * PI * x2);

	return glm::vec2(g1, g2);
}

unsigned int wangHash(unsigned int seed)
{
    
    
	auto s = (seed ^ 61) ^ (seed >> 16);
	s *= 9;
	s = s ^ (s >> 4);
	s *= 0x27d4eb2d;
	s = s ^ (s >> 15);
	return s;
}

float rand(unsigned int& rngState)
{
    
    
	// Xorshift算法
	rngState ^= (rngState << 13);
	rngState ^= (rngState >> 17);
	rngState ^= (rngState << 5);
	return rngState / 4294967296.0f;;
}

//Donelan-Banner方向拓展
float DonelanBannerDirectionalSpreading(glm::vec2 k)
{
    
    
	float betaS;
	float omegap = 0.855f * G / glm::length(WindDir);
	float ratio = dispersion(k) / omegap;

	if (ratio < 0.95f)
	{
    
    
		betaS = 2.61f * std::pow(ratio, 1.3f);
	}
	if (ratio >= 0.95f && ratio < 1.6f)
	{
    
    
		betaS = 2.28f * std::pow(ratio, -1.3f);
	}
	if (ratio > 1.6f)
	{
    
    
		float epsilon = -0.4f + 0.8393f * std::exp(-0.567f * std::log(ratio * ratio));
		betaS = std::pow(10, epsilon);
	}
	float theta = std::atan2(k.y, k.x) - std::atan2(WindDir.y, WindDir.x);

	return betaS / std::max(1e-7, 2.0f * std::tanh(betaS * PI) * std::pow(std::cosh(betaS * theta), 2));
}

HeightSpectrum计算着色器:

#version 440 core

const int LOCAL_WORK_GROUP_SIZE = 32;

const int L = 512;
const int N = 512;
const float G = 9.81;
const float PI = 3.141592653589;

layout(binding = 0 ,rg32f) uniform image2D u_imageH0;
layout(binding = 1 ,rg32f) uniform image2D u_imageH0Conj;
layout(binding = 2 ,rg32f) uniform image2D u_imageOut;

uniform float time;

layout(local_size_x = LOCAL_WORK_GROUP_SIZE, local_size_y = LOCAL_WORK_GROUP_SIZE, local_size_z = 1) in;

float dispersion(vec2 k);
vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2);

void main()
{
    
    
	//通过gl_GlobalInvocationID来得知当前执行单元在全局工作组中的位置
	ivec2 storePos = ivec2(int(gl_GlobalInvocationID.x), int(gl_GlobalInvocationID.y));

	//vec2 k = vec2(2.0f * PI * (storePos.x - N/2) / L, 2.0f * PI * (storePos.y - N/2) / L);
	vec2 k = vec2(2.0f * PI * storePos.x / N - PI, 2.0f * PI * storePos.y / N - PI);

	//根据位置storePos在贴图中采样得到数据
	vec2 h0 = imageLoad(u_imageH0, storePos).xy;
	vec2 h0Conj = imageLoad(u_imageH0Conj, storePos).xy;

	float omegat = dispersion(k) * time;
	float c = cos(omegat);
	float s = sin(omegat);
	
	vec2 e1 = vec2(c,s);
	vec2 e2 = vec2(c,-s);

    vec2 h1 = ComplexMultiply(h0, e1);
	vec2 h2 = ComplexMultiply(h0Conj, e2);

	vec2 HTilde = h1 + h2;

	//将算出来的高度值存储到贴图当中
	imageStore(u_imageOut, storePos, vec4(HTilde, 0.0, 0.0));
}

float dispersion(vec2 k)
{
    
    
	return sqrt(G * length(k));
}

vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2)
{
    
    
	float real = complex_1.x * complex_2.x + complex_1.y * complex_2.y * -1.0;
	float imag = complex_1.x * complex_2.y + complex_1.y * complex_2.x;
	return vec2(real, imag);
}

XZDisplacement计算着色器:

#version 440 core

const int LOCAL_WORK_GROUP_SIZE = 32;

const int L = 512;
const int N = 512;
const float PI = 3.141592653589;

layout(binding = 0 ,rg32f) uniform image2D u_imageHt;
layout(binding = 1 ,rg32f) uniform image2D u_imageDx;
layout(binding = 2 ,rg32f) uniform image2D u_imageDz;

layout(local_size_x = LOCAL_WORK_GROUP_SIZE, local_size_y = LOCAL_WORK_GROUP_SIZE, local_size_z = 1) in;

vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2);

void main()
{
    
    
	//通过gl_GlobalInvocationID来得知当前执行单元在全局工作组中的位置
	ivec2 storePos = ivec2(int(gl_GlobalInvocationID.x), int(gl_GlobalInvocationID.y));

	//vec2 k = vec2(2.0f * PI * (storePos.x - N/2) / L, 2.0f * PI * (storePos.y - N/2) / L);
	vec2 k = vec2(2.0f * PI * storePos.x / N - PI, 2.0f * PI * storePos.y / N - PI);

	k /= max(0.001f, length(k));

	//根据位置storePos在贴图中采样得到数据
	vec2 ht = imageLoad(u_imageHt, storePos).xy;

	vec2 xHTilde = ComplexMultiply(vec2(0.0,-k.x), ht);
	vec2 zHTilde = ComplexMultiply(vec2(0.0,-k.y), ht);
	
	//按公式还差e^ik·x不知道为什么没乘

	//将算出来的高度值存储到贴图当中
	imageStore(u_imageDx, storePos, vec4(xHTilde, 0.0, 0.0));
	imageStore(u_imageDz, storePos, vec4(zHTilde, 0.0, 0.0));
}

vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2)
{
    
    
	float real = complex_1.x * complex_2.x + complex_1.y * complex_2.y * -1.0;
	float imag = complex_1.x * complex_2.y + complex_1.y * complex_2.x;
	return vec2(real, imag);
}

NormalBubbles计算着色器:

#version 440 core

const int LOCAL_WORK_GROUP_SIZE = 32;

const int L = 5110;
const int N = 512;
const float PI = 3.141592653589;

layout(binding = 0 ,rg32f) uniform image2D u_imageDx;
layout(binding = 1 ,rg32f) uniform image2D u_imageDy;
layout(binding = 2 ,rg32f) uniform image2D u_imageDz;
layout(binding = 3 ,rgba32f) uniform image2D u_imageNormal;
//layout(binding = 4 ,rgba32f) uniform image2D u_imageBubbles;

layout(local_size_x = LOCAL_WORK_GROUP_SIZE, local_size_y = LOCAL_WORK_GROUP_SIZE, local_size_z = 1) in;

void main()
{
    
    
    //通过gl_GlobalInvocationID来得知当前执行单元在全局工作组中的位置
	ivec2 storePos = ivec2(int(gl_GlobalInvocationID.x), int(gl_GlobalInvocationID.y));

    //计算法线
    float uintLength = L / (N - 1.0f);//两点间单位长度
    //获取当前点,周围4个点的uv坐标
    ivec2 uvX1 = ivec2((storePos.x - 1 + N) % N, storePos.y);
    ivec2 uvX2 = ivec2((storePos.x + 1 + N) % N, storePos.y);
    ivec2 uvZ1 = ivec2(storePos.x, (storePos.y - 1 + N) % N);
    ivec2 uvZ2 = ivec2(storePos.x, (storePos.y + 1 + N) % N);

    //以当前点为中心,获取周围4个点的偏移值
    vec3 x1D = vec3(imageLoad(u_imageDx, uvX1).x, imageLoad(u_imageDy, uvX1).x, imageLoad(u_imageDz, uvX1).x);
    vec3 x2D = vec3(imageLoad(u_imageDx, uvX2).x, imageLoad(u_imageDy, uvX2).x, imageLoad(u_imageDz, uvX2).x);
    vec3 z1D = vec3(imageLoad(u_imageDx, uvZ1).x, imageLoad(u_imageDy, uvZ1).x, imageLoad(u_imageDz, uvZ1).x);
    vec3 z2D = vec3(imageLoad(u_imageDx, uvZ2).x, imageLoad(u_imageDy, uvZ2).x, imageLoad(u_imageDz, uvZ2).x);

    //以当前点为原点,构建周围4个点的坐标
    vec3 x1 = vec3(x1D.x - uintLength, x1D.yz);
    vec3 x2 = vec3(x2D.x + uintLength, x2D.yz);
    vec3 z1 = vec3(z1D.xy, z1D.z - uintLength);
    vec3 z2 = vec3(z2D.xy, z2D.z + uintLength);

    //计算两个切向量
    vec3 tangentX = x2 - x1;
    vec3 tangentZ = z2 - z1;

    //计算法线
    vec3 normal = normalize(cross(tangentZ, tangentX));

    //计算泡沫
    vec3 ddx = x2D - x1D;
    vec3 ddz = z2D - z1D;
    //雅可比行列式
    float jacobian = (1.0f + ddx.x) * (1.0f + ddz.z) - ddx.z * ddz.x;

    //jacobian = saturate(max(0, BubblesThreshold - saturate(jacobian)) * BubblesScale);

    imageStore(u_imageNormal, storePos, vec4(normal, 0.0));
    //imageStore(u_imageBubbles, storePos, vec4(jacobian, jacobian, jacobian, 0.0));
}

FFTHorizontal计算着色器:

#version 440 core

const int LOCAL_WORK_GROUP_SIZE = 32;

const int L = 512;
const int N = 512;
const float PI = 3.141592653589;

uniform int u_steps;
 
layout (binding = 0, rg32f) uniform image2D u_imageIn; 
layout (binding = 1, rg32f) uniform image2D u_imageOut;
 
layout (binding = 2, r32f) uniform image1D u_imageIndices;
 
//如果一个变量被声明为shared,那么它将被保存到特定的位置,从而对同一个本地工作组内的所有计算着色器请求可见,通常访问共享shared变量的性能会远远好于访问图像或者着色器存储缓存(例如主内存)的性能
shared vec2 sharedStore[N];
 
layout (local_size_x = LOCAL_WORK_GROUP_SIZE * 8, local_size_y = 1, local_size_z = 1) in;

vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2);
vec2 RootOfUnitVector(int n, int k);

void main()
{
    
    
	int xIndex = int(gl_GlobalInvocationID.x);
	int yIndex = int(gl_GlobalInvocationID.y);
 
	int leftStoreIndex = 2 * xIndex;
	int rightStoreIndex = 2 * xIndex + 1;
 
	//读取索引(每一组有两个索引例如(0,4))
	int leftLoadIndex = int(imageLoad(u_imageIndices, leftStoreIndex).r);
	int rightLoadIndex = int(imageLoad(u_imageIndices, rightStoreIndex).r);

	ivec2 leftLoadPos;
	ivec2 rightLoadPos;

	leftLoadPos = ivec2(leftLoadIndex, yIndex);
	rightLoadPos = ivec2(rightLoadIndex, yIndex);

	ivec2 leftStorePos;
	ivec2 rightStorePos;
 
	leftStorePos = ivec2(leftStoreIndex, yIndex);
	rightStorePos = ivec2(rightStoreIndex, yIndex);
 
	//从贴图中读取数据
	vec2 leftValue = imageLoad(u_imageIn, leftLoadPos).xy;
	vec2 rightValue = imageLoad(u_imageIn, rightLoadPos).xy;
	//放入到共享缓存中
	sharedStore[leftStoreIndex] = leftValue;
	sharedStore[rightStoreIndex] = rightValue;
 
	//确保所有数据都存储完毕(否则后续逻辑将无法读到所需的数据,即要保证时序)
	memoryBarrierShared();
	barrier();
 
	int numberButterfliesInSection = 1;
 
	int currentSection = xIndex;
	int currentButterfly = 0;
 
	//计算FFT
	for (int currentStep = 0; currentStep < u_steps; currentStep++)
	{
    
    	
		//根据位置来获取该组所需的两个索引
		int leftIndex = currentButterfly + currentSection * numberButterfliesInSection * 2;
		int rightIndex = currentButterfly + numberButterfliesInSection + currentSection * numberButterfliesInSection * 2;
		//从共享缓存中获得数据
		leftValue = sharedStore[leftIndex];
		rightValue = sharedStore[rightIndex];
			 						
		vec2 currentW = RootOfUnitVector(numberButterfliesInSection * 2, currentButterfly);
	
		vec2 multiply;
		vec2 addition;
		vec2 subtraction;
 
		multiply = ComplexMultiply(currentW, rightValue);	
		
		addition = leftValue + multiply;
		subtraction = leftValue - multiply; 
 
		if(currentStep == u_steps-1)
		{
    
    
			sharedStore[leftIndex] = -addition;
			sharedStore[rightIndex] = -subtraction;
		}
		else
		{
    
    
			sharedStore[leftIndex] = addition;
			sharedStore[rightIndex] = subtraction;
		}
				
		//确保所有数据计算并存储完毕	
		memoryBarrierShared();
 
		//根据蝴蝶算法来改变参数	
		numberButterfliesInSection *= 2;
 
		currentSection /= 2;
		currentButterfly = xIndex % numberButterfliesInSection;
 
		//确保所有的计算着色器都计算完毕
		barrier();
	}

	int x1 = leftStoreIndex - N/2;
	int x2 = rightStoreIndex - N/2;
	int c1 = abs(x1)%2==0?1:-1;
	int c2 = abs(x2)%2==0?1:-1;

	imageStore(u_imageOut, leftStorePos, vec4(c1 * sharedStore[leftStoreIndex], 0.0, 0.0));
	imageStore(u_imageOut, rightStorePos, vec4(c2 * sharedStore[rightStoreIndex], 0.0, 0.0));
}

vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2)
{
    
    
	float real = complex_1.x * complex_2.x + complex_1.y * complex_2.y * -1.0;
	float imag = complex_1.x * complex_2.y + complex_1.y * complex_2.x;
	return vec2(real, imag);
}

//转换成单位根向量
vec2 RootOfUnitVector(int n, int k)
{
    
    
	vec2 result;
	
	result.x = cos(2.0 * PI * float(k) / float(n));
	result.y = sin(2.0 * PI * float(k) / float(n));
 
	return result;
}

FFTVertical计算着色器:

#version 440 core

const int LOCAL_WORK_GROUP_SIZE = 32;

const int L = 512;
const int N = 512;
const float PI = 3.141592653589;

uniform int u_steps;
 
layout (binding = 0, rg32f) uniform image2D u_imageIn; 
layout (binding = 1, rg32f) uniform image2D u_imageOut;
 
layout (binding = 2, r32f) uniform image1D u_imageIndices;
 
//如果一个变量被声明为shared,那么它将被保存到特定的位置,从而对同一个本地工作组内的所有计算着色器请求可见,通常访问共享shared变量的性能会远远好于访问图像或者着色器存储缓存(例如主内存)的性能
shared vec2 sharedStore[N];
 
layout (local_size_x = 1, local_size_y = LOCAL_WORK_GROUP_SIZE * 8, local_size_z = 1) in;

vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2);
vec2 RootOfUnitVector(int n, int k);

void main()
{
    
    
	int xIndex = int(gl_GlobalInvocationID.x);
	int yIndex = int(gl_GlobalInvocationID.y);
 
	int leftStoreIndex = 2 * yIndex;
	int rightStoreIndex = 2 * yIndex + 1;
 
	//读取索引(每一组有两个索引例如(0,4))
	int leftLoadIndex = int(imageLoad(u_imageIndices, leftStoreIndex).r);
	int rightLoadIndex = int(imageLoad(u_imageIndices, rightStoreIndex).r);

	ivec2 leftLoadPos;
	ivec2 rightLoadPos;

	leftLoadPos = ivec2(xIndex, leftLoadIndex);
	rightLoadPos = ivec2(xIndex, rightLoadIndex);

	ivec2 leftStorePos;
	ivec2 rightStorePos;
 
	leftStorePos = ivec2(xIndex, leftStoreIndex);
	rightStorePos = ivec2(xIndex, rightStoreIndex);
 
	//从贴图中读取数据
	vec2 leftValue = imageLoad(u_imageIn, leftLoadPos).xy;
	vec2 rightValue = imageLoad(u_imageIn, rightLoadPos).xy;
	//放入到共享缓存中
	sharedStore[leftStoreIndex] = leftValue;
	sharedStore[rightStoreIndex] = rightValue;
 
	//确保所有数据都存储完毕(否则后续逻辑将无法读到所需的数据,即要保证时序)
	memoryBarrierShared();
	barrier();
 
	int numberButterfliesInSection = 1;
 
	int currentSection = yIndex;
	int currentButterfly = 0;
 
	//计算FFT
	for (int currentStep = 0; currentStep < u_steps; currentStep++)
	{
    
    	
		//根据位置来获取该组所需的两个索引
		int leftIndex = currentButterfly + currentSection * numberButterfliesInSection * 2;
		int rightIndex = currentButterfly + numberButterfliesInSection + currentSection * numberButterfliesInSection * 2;
		//从共享缓存中获得数据
		leftValue = sharedStore[leftIndex];
		rightValue = sharedStore[rightIndex];
			 						
		vec2 currentW = RootOfUnitVector(numberButterfliesInSection * 2, currentButterfly);
	
		vec2 multiply;
		vec2 addition;
		vec2 subtraction;
 
		multiply = ComplexMultiply(currentW, rightValue);	
		
		addition = leftValue + multiply;
		subtraction = leftValue - multiply; 
 
		if(currentStep == u_steps-1)
		{
    
    
			sharedStore[leftIndex] = -addition;
			sharedStore[rightIndex] = -subtraction;
		}
		else
		{
    
    
			sharedStore[leftIndex] = addition;
			sharedStore[rightIndex] = subtraction;
		}
				
		//确保所有数据计算并存储完毕	
		memoryBarrierShared();
 
		//根据蝴蝶算法来改变参数	
		numberButterfliesInSection *= 2;
 
		currentSection /= 2;
		currentButterfly = yIndex % numberButterfliesInSection;
 
		//确保所有的计算着色器都计算完毕
		barrier();
	}

	int z1 = leftStoreIndex - N/2;
	int z2 = rightStoreIndex - N/2;
	int c1 = abs(z1)%2==0?1:-1;
	int c2 = abs(z2)%2==0?1:-1;

	imageStore(u_imageOut, leftStorePos, vec4(c1 * sharedStore[leftStoreIndex], 0.0, 0.0));
	imageStore(u_imageOut, rightStorePos, vec4(c2 * sharedStore[rightStoreIndex], 0.0, 0.0));
}

vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2)
{
    
    
	float real = complex_1.x * complex_2.x + complex_1.y * complex_2.y * -1.0;
	float imag = complex_1.x * complex_2.y + complex_1.y * complex_2.x;
	return vec2(real, imag);
}

//转换成单位根向量
vec2 RootOfUnitVector(int n, int k)
{
    
    
	vec2 result;
	
	result.x = cos(2.0 * PI * float(k) / float(n));
	result.y = sin(2.0 * PI * float(k) / float(n));
 
	return result;
}

顶点和片元着色器:

#version 440 core

layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;

layout(binding = 0) uniform sampler2D u_displacementMapX;
layout(binding = 1) uniform sampler2D u_displacementMapY;
layout(binding = 2) uniform sampler2D u_displacementMapZ;
layout(binding = 3) uniform sampler2D u_normal;

out vec2 textureCoord;
out vec3 verNormal;
out vec3 FragPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    
    
	vec3 displacementX = vec3(texture(u_displacementMapX, aTexCoord).r, 0.0, 0.0);
	vec3 displacementY = vec3(0.0, texture(u_displacementMapY, aTexCoord).r, 0.0);
	vec3 displacementZ = vec3(0.0, 0.0, texture(u_displacementMapZ, aTexCoord).r);

	vec3 normal = texture(u_normal,aTexCoord).rgb;

	gl_Position = projection*view*model*vec4(aPos+displacementX+displacementY+displacementZ, 1.0);
	textureCoord = aTexCoord;
	verNormal = normal;
	FragPos = (model*vec4(aPos+displacementX+displacementY+displacementZ, 1.0)).xyz;
}
#version 440 core

in vec2 textureCoord;
in vec3 verNormal;
in vec3 FragPos;

uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPos;

out vec4 FragColor;

void main()
{
    
    
    //环境光
    vec3 ambient = lightColor * 0.6;
  	
    //漫反射
    vec3 norm = normalize(verNormal);
    vec3 lightDir = normalize(lightPos - FragPos);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = diff * lightColor;  
    
    //镜面光
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 reflectDir = reflect(-lightDir, norm);  
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
    vec3 specular = 0.5 * spec * lightColor;

    //菲涅尔
    float R0 = 0.02;
    float cosTheta = dot(viewDir, norm);
    float R = R0 + (1 - R0) * pow(1 - cosTheta, 5.0);
    vec3 fresnel = vec3(R);
        
    vec3 re = (ambient + diffuse + specular) * vec4(0.0627, 0.145, 0.25, 1.0).xyz;
    re += fresnel * lightColor * 0.5;
    FragColor = vec4(re, 1.0);
}

四、实现效果

实现效果比较基本和简单,波浪效果感觉不算特别理想,并且只添加了基本的光照效果,后续再继续完善。

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq_45523399/article/details/127876812