C51智能小车(循迹、跟随、避障、测速、蓝牙、wifie、4g、语音识别)总结

目录

1.电机模块开发

1.1 让小车动起来

1.2 串口控制小车方向

1.3 如何进行小车PWM调速

1.4 PWM方式实现小车转向

2.循迹小车 

2.1 循迹模块使用

2.2 循迹小车原理

2.3 循迹小车核心代码

3.跟随/避障小车

3.1 红外壁障模块分析​编辑

3.2 跟随小车的原理

3.3 跟随小车开发和调试代码

3.4 超声波模块介绍

3.5 摇头测距小车开发和调试代码

4.测速小车

4.1 测速模块

4.2 测试原理和单位换算

4.3 定时器和中断实现测速开发和调试代码

4.4 小车速度显示在OLED屏

5.远程控制小车

5.1 蓝牙控制小车

5.2 蓝牙控制并测速小车

5.3 wifi控制测速小车

5.4 4g控制小车

6.语音控制小车

6.1语音模块配置:

6.2 语音控制小车开发和调试代码


1.电机模块开发

L9110s概述

接通VCC,GND 模块电源指示灯亮, 以下资料来源官方,具体根据实际调试

IA1输入高电平,IA1输入低电平,【OA1 OB1】电机正转;

IA1输入低电平,IA1输入高电平,【OA1 OB1】电机反转;

IA2输入高电平,IA2输入低电平,【OA2 OB2】电机正转;

IA2输入低电平,IA2输入高电平,【OA2 OB2】电机反转;

1.1 让小车动起来

核心代码:

#include "reg52.h"
#include "intrins.h"

sbit RightCon1A = P3^2;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void Delay1000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 8;
	j = 1;
	k = 243;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void main()
{
	while(1){
		goForward();
		Delay1000ms();
		Delay1000ms();
		goBack();
		Delay1000ms();
		Delay1000ms();
		goLeft();
		Delay1000ms();
		Delay1000ms();
		goRight();
		Delay1000ms();
		Delay1000ms();
	}
}


1.2 串口控制小车方向

  • 串口分文件编程进行代码整合——具体过程看课程,主要考验C语言功底和代码调试能力,通过现象来改代码
  • 接入蓝牙模块,通过蓝牙控制小车
  • 添加点动控制,如果APP支持按下一直发数据,松开就停止发数据(蓝牙调试助手的自定义按键不 能实现),就能实现前进按键按下后小车一直往前走的功能

1.3 如何进行小车PWM调速

原理: 全速前进是LeftCon1A = 0; LeftCon1B = 1;完全停止是LeftCon1A = 0;LeftCon1B = 0;那么单位时 间内,比如20ms, 有15ms是全速前进,5ms是完全停止, 速度就会比5ms全速前进,15ms完全停止获得的功率多,相应的速度更快!

开发:借用PWM的舵机控制代码

核心代码:

#include "motor.h"
#include "delay.h"
#include "uart.h"
#include "time.h"

extern char speed;

void main()
{
	Time0Init();
	//UartInit();
	
	while(1){
		speed = 10;//10份单位时间全速运行,30份停止,所以慢,20ms是40份的500us
		Delay1000ms();
		Delay1000ms();
		speed = 20;
		Delay1000ms();
		Delay1000ms();
		speed = 40;
		Delay1000ms();
		Delay1000ms();
	}
}


//time.c
#include "motor.h"
#include "reg52.h"

char speed;
char cnt = 0;

void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	//控制PWM波
	if(cnt < speed){
		//前进
		goForward();
	}else{
		//停止
		stop();
	}
	
	if(cnt == 40){//爆表40次,经过了20ms
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
	}
		
}

1.4 PWM方式实现小车转向

原理: 左轮定时器0调速,右轮定时器1调速,那么左转就是右轮速度大于左轮!

核心代码:

#include "motor.h"
#include "reg52.h"

char speedLeft;
char cntLeft = 0;

char speedRight;
char cntRight = 0;

void Time1Init()
{
	//1. 配置定时器1工作模式位16位计时
	TMOD &= 0x0F;
	TMOD |= 0x1 << 4;
	//2. 给初值,定一个0.5出来
	TL1=0x33;
	TH1=0xFE;
	//3. 开始计时
	TR1 = 1;
	TF1 = 0;
	//4. 打开定时器1中断
	ET1 = 1;
	//5. 打开总中断EA
	EA = 1;
}


void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void Time1Handler() interrupt 3
{
	cntRight++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL1=0x33;
	TH1=0xFE;
	
	//控制PWM波
	if(cntRight < speedRight){
		//右前进
		goForwardRight();
	}else{
		//停止
		stopRight();
	}
	
	if(cntRight == 40){//爆表40次,经过了20ms
		cntRight = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
	}
		
}

void Time0Handler() interrupt 1
{
	cntLeft++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	//控制PWM波
	if(cntLeft < speedLeft){
		//左前进
		goForwardLeft();
	}else{
		//停止
		stopLeft();
	}
	
	if(cntLeft == 40){//爆表40次,经过了20ms
		cntLeft = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
	}
		
}

2.循迹小车 

2.1 循迹模块使用

  • TCRT5000传感器的红外发射二极管不断发射红外线
  • 当发射出的红外线没有被反射回来或被反射回来但强度不够大时
  • 红外接收管一直处于关断状态,此时模块的输出端为高电平,指示二极管一直处于熄灭状态
  • 被检测物体出现在检测范围内时,红外线被反射回来且强度足够大,红外接收管饱和
  • 此时模块的输出端为低电平,指示二极管被点亮
  • 总结就是一句话,没反射回来,D0输出高电平,灭灯

接线方式

  • VCC:接电源正极(3-5V)
  • GND:接电源负极 DO:TTL开关信号输出0、1
  • AO:模拟信号输出(不同距离输出不同的电压,此脚一般可以不接)

2.2 循迹小车原理

由于黑色具有较强的吸收能力,当循迹模块发射的红外线照射到黑线时,红外线将会被黑线吸收,导致 循迹模块上光敏三极管处于关闭状态,此时模块上一个LED熄灭。在没有检测到黑线时,模块上两个LED常亮

总结就是一句话,有感应到黑线,D0输出高电平 ,灭灯

2.3 循迹小车核心代码

//main.c
#include "motor.h"
#include "delay.h"
#include "uart.h"
#include "time.h"
#include "reg52.h"
extern char speedLeft;
extern char speedRight;


sbit leftSensor = P2^7;
sbit rightSensor = P2^6;

void main()
{
	Time0Init();
	Time1Init();
	//UartInit();
	
	while(1){
		
		if(leftSensor == 0 && rightSensor == 0){
				speedLeft = 32;
				speedRight = 40;
		}
		if(leftSensor == 1 && rightSensor == 0){
				speedLeft = 12;//10份单位时间全速运行,30份停止,所以慢,20ms是40份的500us
				speedRight = 40;
		}
		
		if(leftSensor == 0 && rightSensor == 1){
				speedLeft = 32;
				speedRight = 20;
		}
		
		if(leftSensor == 1 && rightSensor == 1){
			//停
				speedLeft = 0;
				speedRight = 0;
		}
	}
}

//motor.c
#include "reg52.h"

sbit RightCon1A = P3^2;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void goForwardLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
}

void stopLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
}

void goForwardRight()
{
	RightCon1A = 0;
	RightCon1B = 1;
}
void stopRight()
{
	RightCon1A = 0;
	RightCon1B = 0;
}



void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void stop()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 0;
}

//delay.c
#include "intrins.h"

void Delay1000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 8;
	j = 1;
	k = 243;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}



//time.c
#include "motor.h"
#include "reg52.h"

char speedLeft;
char cntLeft = 0;

char speedRight;
char cntRight = 0;

void Time1Init()
{
	//1. 配置定时器1工作模式位16位计时
	TMOD &= 0x0F;
	TMOD |= 0x1 << 4;
	//2. 给初值,定一个0.5出来
	TL1=0x33;
	TH1=0xFE;
	//3. 开始计时
	TR1 = 1;
	TF1 = 0;
	//4. 打开定时器1中断
	ET1 = 1;
	//5. 打开总中断EA
	EA = 1;
}


void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void Time1Handler() interrupt 3
{
	cntRight++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL1=0x33;
	TH1=0xFE;
	
	//控制PWM波
	if(cntRight < speedRight){
		//右前进
		goForwardRight();
	}else{
		//停止
		stopRight();
	}
	
	if(cntRight == 40){//爆表40次,经过了20ms
		cntRight = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
	}
		
}

void Time0Handler() interrupt 1
{
	cntLeft++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	//控制PWM波
	if(cntLeft < speedLeft){
		//左前进
		goForwardLeft();
	}else{
		//停止
		stopLeft();
	}
	
	if(cntLeft == 40){//爆表40次,经过了20ms
		cntLeft = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
	}
		
}

3.跟随/避障小车

3.1 红外壁障模块分析

原理和循迹是一样的,循迹红外观朝下,跟随朝前

3.2 跟随小车的原理

  • 左边跟随模块能返回红外,输出低电平,右边不能返回,输出高电平,说明物体在左边,需要左转
  • 右边跟随模块能返回红外,输出低电平,左边不能返回,输出高电平,说明物体在右边,需要右转

3.3 跟随小车开发和调试代码

//main.c
#include "motor.h"
#include "delay.h"
#include "reg52.h"

//sbit leftSensor = P2^7;
//sbit rightSensor = P2^6;

sbit leftSensor = P2^5;
sbit rightSensor = P2^4;

void main()
{

	while(1){
		if(leftSensor == 0 && rightSensor == 0){
			goForward();
		}
		if(leftSensor == 1 && rightSensor == 0){
			goRight();
		}
		
		if(leftSensor == 0 && rightSensor == 1){
			
			goLeft();
		}
		
		if(leftSensor == 1 && rightSensor == 1){
			//停
			stop();
		}
	}
}


//motor.c
#include "reg52.h"

sbit RightCon1A = P3^2;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void stop()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 0;
}

//delay.c

#include "intrins.h"

void Delay1000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 8;
	j = 1;
	k = 243;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}



3.4 超声波模块介绍

使用超声波模块,型号:HC-SR04

  • 怎么让它发送波 Trig ,给Trig端口至少10us的高电平
  • 怎么知道它开始发了 Echo信号,由低电平跳转到高电平,表示开始发送波
  • 怎么知道接收了返回波 Echo,由高电平跳转回低电平,表示波回来了
  • 怎么算时间 Echo引脚维持高电平的时间! 波发出去的那一下,开始启动定时器 波回来的拿一下,我们开始停止定时器,计算出中间经过多少时间
  • 怎么算距离 距离 = 速度 (340m/s)* 时间/2

时序图:

3.5 摇头测距小车开发和调试代码

//main.c
#include "reg52.h"
#include "hc04.h"
#include "delay.h"
#include "sg90.h"
#include "motor.h"

#define MIDDLE 0
#define LEFT 1
#define RIGHT 2

void main()
{
	char dir;
	
	double disMiddle;
	double disLeft;
	double disRight;
	
	Time0Init();
	Time1Init();
	//舵机的初始位置

	sgMiddle();
	Delay300ms();
	Delay300ms();
	dir = MIDDLE;
	
	while(1){
		
		if(dir != MIDDLE){
			sgMiddle();
			dir = MIDDLE;
			Delay300ms();
		}
		disMiddle = get_distance();
		
		if(disMiddle > 35){
			//前进
			goForward();
		}else if(disMiddle < 10){
			goBack();
			
		}else
		{
			//停止
			stop();
			//测左边距离
			sgLeft();
			Delay300ms();
			disLeft = get_distance();
			
			sgMiddle();
			Delay300ms();
			
			sgRight();
			dir = RIGHT;
			Delay300ms();
			disRight = get_distance();
			
			if(disLeft < disRight){
				goRight();
				Delay150ms();
				stop();
			}
			if(disRight < disLeft){
				goLeft();
				Delay150ms();
				stop();
			}
		}
		
	}
}

//hc04.c
#include "reg52.h"
#include "delay.h"

sbit Trig     = P2^3;
sbit Echo     = P2^2;

void Time1Init()
{	
	TMOD &= 0x0F;		//设置定时器模式
	TMOD |= 0x10;
	TH1 = 0;
	TL1 = 0;
	//设置定时器0工作模式1,初始值设定0开始数数,不着急启动定时器
}

void startHC()
{
	Trig = 0;
	Trig = 1;
	Delay10us();
	Trig = 0;
}

double get_distance()
{
		double time;
		//定时器数据清零,以便下一次测距
		TH1 = 0;
		TL1 = 0;
	//1. Trig ,给Trig端口至少10us的高电平
		startHC();
		//2. echo由低电平跳转到高电平,表示开始发送波
		while(Echo == 0);
		//波发出去的那一下,开始启动定时器
		TR1 = 1;
		//3. 由高电平跳转回低电平,表示波回来了
		while(Echo == 1);
		//波回来的那一下,我们开始停止定时器
		TR1 = 0;
		//4. 计算出中间经过多少时间
		time = (TH1 * 256 + TL1)*1.085;//us为单位
		//5. 距离 = 速度 (340m/s)* 时间/2
		return  (time * 0.017);
}

//delay.c
#include "intrins.h"

void Delay2000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 15;
	j = 2;
	k = 235;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


void Delay10us()		//@11.0592MHz
{
	unsigned char i;

	i = 2;
	while (--i);
}

void Delay300ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 3;
	j = 26;
	k = 223;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


void Delay150ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 2;
	j = 13;
	k = 237;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}

void Delay450ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 4;
	j = 39;
	k = 209;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}

//sg90.c
#include "reg52.h"
#include "delay.h"

sbit sg90_con = P1^1;

int jd;
int cnt = 0;

void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD &= 0xF0;		//设置定时器模式
	TMOD |= 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void sgMiddle()
{
	//中间位置
	jd = 3; //90度 1.5ms高电平
	cnt = 0;
}

void sgLeft()
{
	//左边位置
	jd = 5; //135度 1.5ms高电平
	cnt = 0;
}

void sgRight()
{
	//右边位置
	jd = 1; //0度
	cnt = 0;
}


void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	//控制PWM波
	if(cnt < jd){
		sg90_con = 1;
	}else{
		sg90_con = 0;
	}
	
	if(cnt == 40){//爆表40次,经过了20ms
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
		sg90_con = 1;
	}
		
}

//motor.c
#include "reg52.h"

sbit RightCon1A = P3^2;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void stop()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 0;
}






4.测速小车

4.1 测速模块

  • 用途:广泛用于电机转速检测,脉冲计数,位置限位等。
  • 有遮挡,输出高电平;无遮挡,输出低电平
  • 接线 :VCC 接电源正极3.3-5V
  • GND 接电源负极 DO TTL开关信号输出
  • AO 此模块不起作用

4.2 测试原理和单位换算

  • 轮子走一圈,经过一个周长,C = 2x3.14x半径= 3.14 x 直径(6.5cm)
  • 对应的码盘也转了一圈,码盘有20个格子,每经过一个格子,会遮挡(高电平)和不遮挡(低电平), 那么一个脉冲就是走了 3.14 * 6.5 cm /20 = 1.0205CM
  • 定时器可以设计成一秒,统计脉冲数,一个脉冲就是1cm
  • 假设一秒有80脉冲,那么就是80cm/s

4.3 定时器和中断实现测速开发和调试代码

测试数据通过串口发送到上位机

//main.c
#include "motor.h"
#include "delay.h"
#include "uart.h"
#include "reg52.h"
#include "time.h"
#include "stdio.h"

sbit speedIO = P3^2;//外部中断0
unsigned int speedCnt = 0; //统计格子,脉冲次数
extern unsigned int speed;//速度
extern char signal; //主程序发速度数据的通知
char speedMes[24];  //主程序发送速度数据的字符串缓冲区

void Ex0Init()
{
	EX0 = 1;//允许中断
	//EA = 1;在串口初始化函数中已经打开了总中断
	IT0 = 1;//外部中断的下降沿触发
}

void main()
{
	Time0Init();//定时器0初始化
	UartInit();//串口相关初始化
	//外部中断初始化
	Ex0Init();
	
	while(1){
		if(signal){//定时器1s到点,把signal置一,主程序发送速度
			sprintf(speedMes,"speed:%d cm/s",speed);//串口数据的字符串拼装,speed是格子,每个格子1cm
			SendString(speedMes);//速度发出去
			signal = 0;//清0speed,下次由定时器1s后的中断处理中再置一
		}
	}
}

void speedHandler() interrupt 0 //外部中断处理函数
{
	speedCnt++;//码盘转动了一个格子
}

//uart.c
#include "reg52.h"
#include "motor.h"
#include "string.h"
sbit D5 = P3^7;
#define SIZE 12

sfr AUXR = 0x8E;
char buffer[SIZE];

void UartInit(void)		//[email protected]
{
	AUXR = 0x01;
	SCON = 0x50; //配置串口工作方式1,REN使能接收
	TMOD &= 0x0F;
	TMOD |= 0x20;//定时器1工作方式位8位自动重装
	
	TH1 = 0xFD;
	TL1 = 0xFD;//9600波特率的初值
	TR1 = 1;//启动定时器
	
	EA = 1;//开启总中断
	ES = 1;//开启串口中断
}


void SendByte(char mydata)
{
	SBUF = mydata;
	while(!TI);
	TI = 0;
}

void SendString(char *str)
{
	while(*str != '\0'){
		SendByte(*str);
		str++;
	}
}


//M1qian  M2 hou M3 zuo  M4 you
void Uart_Handler() interrupt 4
{
	static int i = 0;//静态变量,被初始化一次
	char tmp;

	if(RI)//中断处理函数中,对于接收中断的响应
	{
			RI = 0;//清除接收中断标志位
			tmp = SBUF;
			if(tmp == 'M'){
				i = 0;
			}
			buffer[i++] = tmp;
		
			//灯控指令
			if(buffer[0] == 'M'){
				switch(buffer[1]){
					case '1':
						goForward();
						break;
					case '2':
						goBack();
						break;
					case '3':
						goLeft();
						break;
					case '4':
						goRight();
						break;
					default:
						stop();
						break;
				}
			}
		
			if(i == 12) {
				memset(buffer, '\0', SIZE);
				i = 0;
			}
	}
		
}

//motor.c
#include "reg52.h"

sbit RightCon1A = P3^7;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void stop()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 0;
}

//time.c
#include "motor.h"
#include "reg52.h"

extern unsigned int speedCnt;
unsigned int speed;
char signal = 0;
unsigned int cnt = 0;

void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	if(cnt == 2000){//爆表2000次,经过了1s
		signal = 1;
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
		//计算小车的速度,也就是拿到speedCnt的值
		speed = speedCnt;
		speedCnt = 0;//1秒后拿到speedCnt个格子,就能算出这1s的速度,格子清零
	}
		
}

4.4 小车速度显示在OLED屏

使用oled模块

//main.c
#include "reg52.h"
#include "intrins.h"
#include "Oled.h"

void main()
{
		//1. OLED初始化
		Oled_Init();
		Oled_Clear();
		Oled_Show_Str(2,2,"speed:35cm/s");
	
		while(1);
}

//oled.c
#include "reg52.h"
#include "intrins.h"
#include "Oledfont.h"


sbit scl = P1^2;
sbit sda = P1^3;

void IIC_Start()
{
	scl = 0;
	sda = 1;
	scl = 1;
	_nop_();
	sda = 0;
	_nop_();
}

void IIC_Stop()
{
	scl = 0;
	sda = 0;
	scl = 1;
	_nop_();
	sda = 1;
	_nop_();
}

char IIC_ACK()
{
	char flag;
	sda = 1;//就在时钟脉冲9期间释放数据线
	_nop_();
	scl = 1;
	_nop_();
	flag = sda;
	_nop_();
	scl = 0;
	_nop_();
	
	return flag;
}

void IIC_Send_Byte(char dataSend)
{
	int i;
	
	for(i = 0;i<8;i++){
		scl = 0;//scl拉低,让sda做好数据准备
		sda = dataSend & 0x80;//1000 0000获得dataSend的最高位,给sda
		_nop_();//发送数据建立时间
		scl = 1;//scl拉高开始发送
		_nop_();//数据发送时间
		scl = 0;//发送完毕拉低
		_nop_();//
		dataSend = dataSend << 1;
	}
}

void Oled_Write_Cmd(char dataCmd)
{
	//	1. start()
	IIC_Start();
	//		
	//	2. 写入从机地址  b0111 1000 0x78
	IIC_Send_Byte(0x78);
	//	3. ACK
	IIC_ACK();
	//	4. cotrol byte: (0)(0)000000 写入命令   (0)(1)000000写入数据
	IIC_Send_Byte(0x00);
	//	5. ACK
	IIC_ACK();
	//6. 写入指令/数据
	IIC_Send_Byte(dataCmd);
	//7. ACK
	IIC_ACK();
	//8. STOP
	IIC_Stop();
}

void Oled_Write_Data(char dataData)
{
	//	1. start()
	IIC_Start();
	//		
	//	2. 写入从机地址  b0111 1000 0x78
	IIC_Send_Byte(0x78);
	//	3. ACK
	IIC_ACK();
	//	4. cotrol byte: (0)(0)000000 写入命令   (0)(1)000000写入数据
	IIC_Send_Byte(0x40);
	//	5. ACK
	IIC_ACK();
	///6. 写入指令/数据
	IIC_Send_Byte(dataData);
	//7. ACK
	IIC_ACK();
	//8. STOP
	IIC_Stop();
}


void Oled_Init(void){
	Oled_Write_Cmd(0xAE);//--display off
	Oled_Write_Cmd(0x00);//---set low column address
	Oled_Write_Cmd(0x10);//---set high column address
	Oled_Write_Cmd(0x40);//--set start line address  
	Oled_Write_Cmd(0xB0);//--set page address
	Oled_Write_Cmd(0x81); // contract control
	Oled_Write_Cmd(0xFF);//--128   
	Oled_Write_Cmd(0xA1);//set segment remap 
	Oled_Write_Cmd(0xA6);//--normal / reverse
	Oled_Write_Cmd(0xA8);//--set multiplex ratio(1 to 64)
	Oled_Write_Cmd(0x3F);//--1/32 duty
	Oled_Write_Cmd(0xC8);//Com scan direction
	Oled_Write_Cmd(0xD3);//-set display offset
	Oled_Write_Cmd(0x00);//
	
	Oled_Write_Cmd(0xD5);//set osc division
	Oled_Write_Cmd(0x80);//
	
	Oled_Write_Cmd(0xD8);//set area color mode off
	Oled_Write_Cmd(0x05);//
	
	Oled_Write_Cmd(0xD9);//Set Pre-Charge Period
	Oled_Write_Cmd(0xF1);//
	
	Oled_Write_Cmd(0xDA);//set com pin configuartion
	Oled_Write_Cmd(0x12);//
	
	Oled_Write_Cmd(0xDB);//set Vcomh
	Oled_Write_Cmd(0x30);//
	
	Oled_Write_Cmd(0x8D);//set charge pump enable
	Oled_Write_Cmd(0x14);//
	
	Oled_Write_Cmd(0xAF);//--turn on oled panel		
}

void Oled_Clear()
{
	unsigned char i,j; //-128 --- 127
	
	for(i=0;i<8;i++){
		Oled_Write_Cmd(0xB0 + i);//page0--page7
		//每个page从0列
		Oled_Write_Cmd(0x00);
		Oled_Write_Cmd(0x10);
		//0到127列,依次写入0,每写入数据,列地址自动偏移
		for(j = 0;j<128;j++){
			Oled_Write_Data(0);
		}
	}
}

void Oled_Show_Char(char row,char col,char oledChar){ //row*2-2
	unsigned int  i;
	Oled_Write_Cmd(0xb0+(row*2-2));                           //page 0
	Oled_Write_Cmd(0x00+(col&0x0f));                          //low
	Oled_Write_Cmd(0x10+(col>>4));                            //high	
	for(i=((oledChar-32)*16);i<((oledChar-32)*16+8);i++){
		Oled_Write_Data(F8X16[i]);                            //写数据oledTable1
	}

	Oled_Write_Cmd(0xb0+(row*2-1));                           //page 1
	Oled_Write_Cmd(0x00+(col&0x0f));                          //low
	Oled_Write_Cmd(0x10+(col>>4));                            //high
	for(i=((oledChar-32)*16+8);i<((oledChar-32)*16+8+8);i++){
		Oled_Write_Data(F8X16[i]);                            //写数据oledTable1
	}		
}


/******************************************************************************/
// 函数名称:Oled_Show_Char 
// 输入参数:oledChar 
// 输出参数:无 
// 函数功能:OLED显示单个字符
/******************************************************************************/
void Oled_Show_Str(char row,char col,char *str){
	while(*str!=0){
		Oled_Show_Char(row,col,*str);
		str++;
		col += 8;	
	}		
}

5.远程控制小车

5.1 蓝牙控制小车

  • 使用蓝牙模块,串口透传
  • 蓝牙模块,又叫做蓝牙串口模块

串口透传技术:

  • 透传即透明传送,是指在数据的传输过程中,通过无线的方式这组数据不发生任何形式的改变,仿 佛传输过程是透明的一样,同时保证传输的质量,原封不动地到了最终接收者手里。
  • 以太网,蓝牙,Zigbee, GPRS 等模块玩法一样,对嵌入式程序员来说,不需要关心通讯模块内部数据 及协议栈工作原理,只要通过串口编程获得数据即可

代码实现:

//main.c
#include "motor.h"
#include "delay.h"
#include "uart.h"

void main()
{
	UartInit();
	
	while(1){
		stop();
	}
}

//uart.c
#include "reg52.h"
#include "motor.h"
#include "string.h"
#include "delay.h"
sbit D5 = P3^7;
#define SIZE 12

sfr AUXR = 0x8E;
char buffer[SIZE];

void UartInit(void)		//[email protected]
{
	AUXR = 0x01;
	SCON = 0x50; //配置串口工作方式1,REN使能接收
	TMOD &= 0x0F;
	TMOD |= 0x20;//定时器1工作方式位8位自动重装
	
	TH1 = 0xFD;
	TL1 = 0xFD;//9600波特率的初值
	TR1 = 1;//启动定时器
	
	EA = 1;//开启总中断
	ES = 1;//开启串口中断
}

//M1qian  M2 hou M3 zuo  M4 you
void Uart_Handler() interrupt 4
{
	static int i = 0;//静态变量,被初始化一次
	char tmp;

	if(RI)//中断处理函数中,对于接收中断的响应
	{
			RI = 0;//清除接收中断标志位
			tmp = SBUF;
			if(tmp == 'M'){
				i = 0;
			}
			buffer[i++] = tmp;
		
			//灯控指令
			if(buffer[0] == 'M'){
				switch(buffer[1]){
					case '1':
						goForward();
						Delay10ms();
						break;
					case '2':
						goBack();
						Delay10ms();
						break;
					case '3':
						goLeft();
						Delay10ms();
						break;
					case '4':
						goRight();
						Delay10ms();
						break;
					default:
						stop();
						break;
				}
			}
		
			if(i == 12) {
				memset(buffer, '\0', SIZE);
				i = 0;
			}
	}
		
}

//motor.c
#include "reg52.h"

sbit RightCon1A = P3^2;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void stop()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 0;
}

//delay.c

#include "intrins.h"

void Delay10ms()		//@11.0592MHz
{
	unsigned char i, j;

	i = 18;
	j = 235;
	do
	{
		while (--j);
	} while (--i);
}

void Delay1000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 8;
	j = 1;
	k = 243;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}



5.2 蓝牙控制并测速小车

原理:运用上面讲到的蓝牙模块和测速模块

代码实现:

//main.c
#include "motor.h"
#include "delay.h"
#include "uart.h"
#include "reg52.h"
#include "time.h"
#include "stdio.h"
#include "Oled.h"

sbit speedIO = P3^2;//外部中断0
unsigned int speedCnt = 0; //统计格子,脉冲次数
extern unsigned int speed;//速度
extern char signal; //主程序发速度数据的通知
char speedMes[24];  //主程序发送速度数据的字符串缓冲区

void Ex0Init()
{
	EX0 = 1;//允许中断
	//EA = 1;在串口初始化函数中已经打开了总中断
	IT0 = 1;//外部中断的下降沿触发
}

void main()
{
	Time0Init();//定时器0初始化
	UartInit();//串口相关初始化
	//外部中断初始化
	Ex0Init();
	Oled_Init();
	Oled_Clear();
	while(1){
		if(signal){//定时器1s到点,把signal置一,主程序发送速度
			sprintf(speedMes,"speed:%d cm/s",speed);//串口数据的字符串拼装,speed是格子,每个格子1cm
			SendString(speedMes);//速度发出去
		
			signal = 0;//清0speed,下次由定时器1s后的中断处理中再置一
		}
		Oled_Show_Str(2,2,speedMes);
	}
}

void speedHandler() interrupt 0 //外部中断处理函数
{
	speedCnt++;//码盘转动了一个格子
}

//uart.c
#include "reg52.h"
#include "motor.h"
#include "string.h"
sbit D5 = P3^7;
#define SIZE 12

sfr AUXR = 0x8E;
char buffer[SIZE];

void UartInit(void)		//[email protected]
{
	AUXR = 0x01;
	SCON = 0x50; //配置串口工作方式1,REN使能接收
	TMOD &= 0x0F;
	TMOD |= 0x20;//定时器1工作方式位8位自动重装
	
	TH1 = 0xFD;
	TL1 = 0xFD;//9600波特率的初值
	TR1 = 1;//启动定时器
	
	EA = 1;//开启总中断
	ES = 1;//开启串口中断
}


void SendByte(char mydata)
{
	SBUF = mydata;
	while(!TI);
	TI = 0;
}

void SendString(char *str)
{
	while(*str != '\0'){
		SendByte(*str);
		str++;
	}
}


//M1qian  M2 hou M3 zuo  M4 you
void Uart_Handler() interrupt 4
{
	static int i = 0;//静态变量,被初始化一次
	char tmp;

	if(RI)//中断处理函数中,对于接收中断的响应
	{
			RI = 0;//清除接收中断标志位
			tmp = SBUF;
			if(tmp == 'M'){
				i = 0;
			}
			buffer[i++] = tmp;
		
			//灯控指令
			if(buffer[0] == 'M'){
				switch(buffer[1]){
					case '1':
						goForward();
						break;
					case '2':
						goBack();
						break;
					case '3':
						goLeft();
						break;
					case '4':
						goRight();
						break;
					default:
						stop();
						break;
				}
			}
		
			if(i == 12) {
				memset(buffer, '\0', SIZE);
				i = 0;
			}
	}
		
}

//motor.c
#include "reg52.h"

sbit RightCon1A = P3^7;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void stop()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 0;
}

//time.c
#include "motor.h"
#include "reg52.h"

extern unsigned int speedCnt;
unsigned int speed;
char signal = 0;
unsigned int cnt = 0;

void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	if(cnt == 2000){//爆表2000次,经过了1s
		signal = 1;
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
		//计算小车的速度,也就是拿到speedCnt的值
		speed = speedCnt;
		speedCnt = 0;//1秒后拿到speedCnt个格子,就能算出这1s的速度,格子清零
	}
		
}

//oled.c
#include "reg52.h"
#include "intrins.h"
#include "Oledfont.h"


sbit scl = P1^2;
sbit sda = P1^3;

void IIC_Start()
{
	scl = 0;
	sda = 1;
	scl = 1;
	_nop_();
	sda = 0;
	_nop_();
}

void IIC_Stop()
{
	scl = 0;
	sda = 0;
	scl = 1;
	_nop_();
	sda = 1;
	_nop_();
}

char IIC_ACK()
{
	char flag;
	sda = 1;//就在时钟脉冲9期间释放数据线
	_nop_();
	scl = 1;
	_nop_();
	flag = sda;
	_nop_();
	scl = 0;
	_nop_();
	
	return flag;
}

void IIC_Send_Byte(char dataSend)
{
	int i;
	
	for(i = 0;i<8;i++){
		scl = 0;//scl拉低,让sda做好数据准备
		sda = dataSend & 0x80;//1000 0000获得dataSend的最高位,给sda
		_nop_();//发送数据建立时间
		scl = 1;//scl拉高开始发送
		_nop_();//数据发送时间
		scl = 0;//发送完毕拉低
		_nop_();//
		dataSend = dataSend << 1;
	}
}

void Oled_Write_Cmd(char dataCmd)
{
	//	1. start()
	IIC_Start();
	//		
	//	2. 写入从机地址  b0111 1000 0x78
	IIC_Send_Byte(0x78);
	//	3. ACK
	IIC_ACK();
	//	4. cotrol byte: (0)(0)000000 写入命令   (0)(1)000000写入数据
	IIC_Send_Byte(0x00);
	//	5. ACK
	IIC_ACK();
	//6. 写入指令/数据
	IIC_Send_Byte(dataCmd);
	//7. ACK
	IIC_ACK();
	//8. STOP
	IIC_Stop();
}

void Oled_Write_Data(char dataData)
{
	//	1. start()
	IIC_Start();
	//		
	//	2. 写入从机地址  b0111 1000 0x78
	IIC_Send_Byte(0x78);
	//	3. ACK
	IIC_ACK();
	//	4. cotrol byte: (0)(0)000000 写入命令   (0)(1)000000写入数据
	IIC_Send_Byte(0x40);
	//	5. ACK
	IIC_ACK();
	///6. 写入指令/数据
	IIC_Send_Byte(dataData);
	//7. ACK
	IIC_ACK();
	//8. STOP
	IIC_Stop();
}


void Oled_Init(void){
	Oled_Write_Cmd(0xAE);//--display off
	Oled_Write_Cmd(0x00);//---set low column address
	Oled_Write_Cmd(0x10);//---set high column address
	Oled_Write_Cmd(0x40);//--set start line address  
	Oled_Write_Cmd(0xB0);//--set page address
	Oled_Write_Cmd(0x81); // contract control
	Oled_Write_Cmd(0xFF);//--128   
	Oled_Write_Cmd(0xA1);//set segment remap 
	Oled_Write_Cmd(0xA6);//--normal / reverse
	Oled_Write_Cmd(0xA8);//--set multiplex ratio(1 to 64)
	Oled_Write_Cmd(0x3F);//--1/32 duty
	Oled_Write_Cmd(0xC8);//Com scan direction
	Oled_Write_Cmd(0xD3);//-set display offset
	Oled_Write_Cmd(0x00);//
	
	Oled_Write_Cmd(0xD5);//set osc division
	Oled_Write_Cmd(0x80);//
	
	Oled_Write_Cmd(0xD8);//set area color mode off
	Oled_Write_Cmd(0x05);//
	
	Oled_Write_Cmd(0xD9);//Set Pre-Charge Period
	Oled_Write_Cmd(0xF1);//
	
	Oled_Write_Cmd(0xDA);//set com pin configuartion
	Oled_Write_Cmd(0x12);//
	
	Oled_Write_Cmd(0xDB);//set Vcomh
	Oled_Write_Cmd(0x30);//
	
	Oled_Write_Cmd(0x8D);//set charge pump enable
	Oled_Write_Cmd(0x14);//
	
	Oled_Write_Cmd(0xAF);//--turn on oled panel		
}

void Oled_Clear()
{
	unsigned char i,j; //-128 --- 127
	
	for(i=0;i<8;i++){
		Oled_Write_Cmd(0xB0 + i);//page0--page7
		//每个page从0列
		Oled_Write_Cmd(0x00);
		Oled_Write_Cmd(0x10);
		//0到127列,依次写入0,每写入数据,列地址自动偏移
		for(j = 0;j<128;j++){
			Oled_Write_Data(0);
		}
	}
}

void Oled_Show_Char(char row,char col,char oledChar){ //row*2-2
	unsigned int  i;
	Oled_Write_Cmd(0xb0+(row*2-2));                           //page 0
	Oled_Write_Cmd(0x00+(col&0x0f));                          //low
	Oled_Write_Cmd(0x10+(col>>4));                            //high	
	for(i=((oledChar-32)*16);i<((oledChar-32)*16+8);i++){
		Oled_Write_Data(F8X16[i]);                            //写数据oledTable1
	}

	Oled_Write_Cmd(0xb0+(row*2-1));                           //page 1
	Oled_Write_Cmd(0x00+(col&0x0f));                          //low
	Oled_Write_Cmd(0x10+(col>>4));                            //high
	for(i=((oledChar-32)*16+8);i<((oledChar-32)*16+8+8);i++){
		Oled_Write_Data(F8X16[i]);                            //写数据oledTable1
	}		
}


/******************************************************************************/
// 函数名称:Oled_Show_Char 
// 输入参数:oledChar 
// 输出参数:无 
// 函数功能:OLED显示单个字符
/******************************************************************************/
void Oled_Show_Str(char row,char col,char *str){
	while(*str!=0){
		Oled_Show_Char(row,col,*str);
		str++;
		col += 8;	
	}		
}

5.3 wifi控制测速小车

  • Wifi模块-ESP-01s
  • 蓝牙,ESP-01s,Zigbee, NB-Iot等通信模块都是基于AT指令的设计

AT指令介绍:

  • AT指令集是从终端设备(Terminal Equipment,TE)或数据终端设备(Data Terminal Equipment,DTE)向终端适配器(Terminal Adapter,TA)或数据电路终端设备(Data Circuit Terminal Equipment,DCE)发送的。
  • 其对所传输的数据包大小有定义:即对于AT指令的发送,除AT两个字符外,最多可以接收1056个 字符的长度(包括最后的空字符)。
  • 每个AT命令行中只能包含一条AT指令;对于由终端设备主动向PC端报告的URC指示或者response 响应,也要求一行最多有一个,不允许上报的一行中有多条指示或者响应。AT指令以回车作为结 尾,响应或上报以回车换行为结尾。

代码实现:

//main.c
#include "motor.h"
#include "delay.h"
#include "uart.h"
#include "reg52.h"
#include "time.h"
#include "stdio.h"
#include "Oled.h"
#include "esp8266.h"

sbit speedIO = P3^2;//外部中断0
unsigned int speedCnt = 0; //统计格子,脉冲次数
extern unsigned int speed;//速度
extern char signal; //主程序发速度数据的通知
char speedMes[24];  //主程序发送速度数据的字符串缓冲区
//发送数据
char FSSJ[] = "AT+CIPSEND=0,5\r\n";

void Ex0Init()
{
	EX0 = 1;//允许中断
	//EA = 1;在串口初始化函数中已经打开了总中断
	IT0 = 1;//外部中断的下降沿触发
}

void main()
{
	Time0Init();//定时器0初始化
	UartInit();//串口相关初始化
	Delay1000ms();//给espwifi模块上电时间
	
	initWifi_AP(); //初始化wifi工作在ap模式
	waitConnect(); //等待客户端的连接
	
	//外部中断初始化
	Ex0Init();
	Oled_Init();
	Oled_Clear();
	while(1){
		if(signal){//定时器1s到点,把signal置一,主程序发送速度
			SendString(FSSJ);
			Delay1000ms();
			sprintf(speedMes,"%dcms",speed);//串口数据的字符串拼装,speed是格子,每个格子1cm
			SendString(speedMes);//速度发出去
		
			signal = 0;//清0speed,下次由定时器1s后的中断处理中再置一
		}
		Oled_Show_Str(2,2,speedMes);
	}
}

void speedHandler() interrupt 0 //外部中断处理函数
{
	speedCnt++;//码盘转动了一个格子
}

//uart.c
#include "reg52.h"
#include "motor.h"
#include "string.h"
sbit D5 = P3^7;
#define SIZE 12

sfr AUXR = 0x8E;
char buffer[SIZE];

extern char AT_OK_Flag;				//OK返回值的标志位
extern char Client_Connect_Flag;

void UartInit(void)		//[email protected]
{
	AUXR = 0x01;
	SCON = 0x50; //配置串口工作方式1,REN使能接收
	TMOD &= 0x0F;
	TMOD |= 0x20;//定时器1工作方式位8位自动重装
	
	TH1 = 0xFD;
	TL1 = 0xFD;//9600波特率的初值
	TR1 = 1;//启动定时器
	
	EA = 1;//开启总中断
	ES = 1;//开启串口中断
}


void SendByte(char mydata)
{
	SBUF = mydata;
	while(!TI);
	TI = 0;
}

void SendString(char *str)
{
	while(*str != '\0'){
		SendByte(*str);
		str++;
	}
}


//M1qian  M2 hou M3 zuo  M4 you
void Uart_Handler() interrupt 4
{
	static int i = 0;//静态变量,被初始化一次
	char tmp;

	if(RI)//中断处理函数中,对于接收中断的响应
	{
			RI = 0;//清除接收中断标志位
			tmp = SBUF;
			if(tmp == 'M' || tmp == 'O' || tmp == '0'){
				i = 0;
			}
			buffer[i++] = tmp;
		
			//连接服务器等OK返回值指令的判断
			if(buffer[0] == 'O' && buffer[1] == 'K'){
				AT_OK_Flag	= 1;
				memset(buffer, '\0', SIZE);
			}
			
			if(buffer[0] == '0' && buffer[2] == 'C'){
				Client_Connect_Flag	= 1;
				memset(buffer, '\0', SIZE);
			}
			//灯控指令
			if(buffer[0] == 'M'){
				switch(buffer[1]){
					case '1':
						goForward();
						break;
					case '2':
						goBack();
						break;
					case '3':
						goLeft();
						break;
					case '4':
						goRight();
						break;
					default:
						stop();
						break;
				}
			}
		
			if(i == 12) {
				memset(buffer, '\0', SIZE);
				i = 0;
			}
	}
		
}

//motor.c
#include "reg52.h"

sbit RightCon1A = P3^7;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void stop()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 0;
}

//time.c
#include "motor.h"
#include "reg52.h"

extern unsigned int speedCnt;
unsigned int speed;
char signal = 0;
unsigned int cnt = 0;

void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD = 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	if(cnt == 2000){//爆表2000次,经过了1s
		signal = 1;
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
		//计算小车的速度,也就是拿到speedCnt的值
		speed = speedCnt;
		speedCnt = 0;//1秒后拿到speedCnt个格子,就能算出这1s的速度,格子清零
	}
		
}

//oled.c
#include "reg52.h"
#include "intrins.h"
#include "Oledfont.h"


sbit scl = P1^2;
sbit sda = P1^3;

void IIC_Start()
{
	scl = 0;
	sda = 1;
	scl = 1;
	_nop_();
	sda = 0;
	_nop_();
}

void IIC_Stop()
{
	scl = 0;
	sda = 0;
	scl = 1;
	_nop_();
	sda = 1;
	_nop_();
}

char IIC_ACK()
{
	char flag;
	sda = 1;//就在时钟脉冲9期间释放数据线
	_nop_();
	scl = 1;
	_nop_();
	flag = sda;
	_nop_();
	scl = 0;
	_nop_();
	
	return flag;
}

void IIC_Send_Byte(char dataSend)
{
	int i;
	
	for(i = 0;i<8;i++){
		scl = 0;//scl拉低,让sda做好数据准备
		sda = dataSend & 0x80;//1000 0000获得dataSend的最高位,给sda
		_nop_();//发送数据建立时间
		scl = 1;//scl拉高开始发送
		_nop_();//数据发送时间
		scl = 0;//发送完毕拉低
		_nop_();//
		dataSend = dataSend << 1;
	}
}

void Oled_Write_Cmd(char dataCmd)
{
	//	1. start()
	IIC_Start();
	//		
	//	2. 写入从机地址  b0111 1000 0x78
	IIC_Send_Byte(0x78);
	//	3. ACK
	IIC_ACK();
	//	4. cotrol byte: (0)(0)000000 写入命令   (0)(1)000000写入数据
	IIC_Send_Byte(0x00);
	//	5. ACK
	IIC_ACK();
	//6. 写入指令/数据
	IIC_Send_Byte(dataCmd);
	//7. ACK
	IIC_ACK();
	//8. STOP
	IIC_Stop();
}

void Oled_Write_Data(char dataData)
{
	//	1. start()
	IIC_Start();
	//		
	//	2. 写入从机地址  b0111 1000 0x78
	IIC_Send_Byte(0x78);
	//	3. ACK
	IIC_ACK();
	//	4. cotrol byte: (0)(0)000000 写入命令   (0)(1)000000写入数据
	IIC_Send_Byte(0x40);
	//	5. ACK
	IIC_ACK();
	///6. 写入指令/数据
	IIC_Send_Byte(dataData);
	//7. ACK
	IIC_ACK();
	//8. STOP
	IIC_Stop();
}


void Oled_Init(void){
	Oled_Write_Cmd(0xAE);//--display off
	Oled_Write_Cmd(0x00);//---set low column address
	Oled_Write_Cmd(0x10);//---set high column address
	Oled_Write_Cmd(0x40);//--set start line address  
	Oled_Write_Cmd(0xB0);//--set page address
	Oled_Write_Cmd(0x81); // contract control
	Oled_Write_Cmd(0xFF);//--128   
	Oled_Write_Cmd(0xA1);//set segment remap 
	Oled_Write_Cmd(0xA6);//--normal / reverse
	Oled_Write_Cmd(0xA8);//--set multiplex ratio(1 to 64)
	Oled_Write_Cmd(0x3F);//--1/32 duty
	Oled_Write_Cmd(0xC8);//Com scan direction
	Oled_Write_Cmd(0xD3);//-set display offset
	Oled_Write_Cmd(0x00);//
	
	Oled_Write_Cmd(0xD5);//set osc division
	Oled_Write_Cmd(0x80);//
	
	Oled_Write_Cmd(0xD8);//set area color mode off
	Oled_Write_Cmd(0x05);//
	
	Oled_Write_Cmd(0xD9);//Set Pre-Charge Period
	Oled_Write_Cmd(0xF1);//
	
	Oled_Write_Cmd(0xDA);//set com pin configuartion
	Oled_Write_Cmd(0x12);//
	
	Oled_Write_Cmd(0xDB);//set Vcomh
	Oled_Write_Cmd(0x30);//
	
	Oled_Write_Cmd(0x8D);//set charge pump enable
	Oled_Write_Cmd(0x14);//
	
	Oled_Write_Cmd(0xAF);//--turn on oled panel		
}

void Oled_Clear()
{
	unsigned char i,j; //-128 --- 127
	
	for(i=0;i<8;i++){
		Oled_Write_Cmd(0xB0 + i);//page0--page7
		//每个page从0列
		Oled_Write_Cmd(0x00);
		Oled_Write_Cmd(0x10);
		//0到127列,依次写入0,每写入数据,列地址自动偏移
		for(j = 0;j<128;j++){
			Oled_Write_Data(0);
		}
	}
}

void Oled_Show_Char(char row,char col,char oledChar){ //row*2-2
	unsigned int  i;
	Oled_Write_Cmd(0xb0+(row*2-2));                           //page 0
	Oled_Write_Cmd(0x00+(col&0x0f));                          //low
	Oled_Write_Cmd(0x10+(col>>4));                            //high	
	for(i=((oledChar-32)*16);i<((oledChar-32)*16+8);i++){
		Oled_Write_Data(F8X16[i]);                            //写数据oledTable1
	}

	Oled_Write_Cmd(0xb0+(row*2-1));                           //page 1
	Oled_Write_Cmd(0x00+(col&0x0f));                          //low
	Oled_Write_Cmd(0x10+(col>>4));                            //high
	for(i=((oledChar-32)*16+8);i<((oledChar-32)*16+8+8);i++){
		Oled_Write_Data(F8X16[i]);                            //写数据oledTable1
	}		
}


/******************************************************************************/
// 函数名称:Oled_Show_Char 
// 输入参数:oledChar 
// 输出参数:无 
// 函数功能:OLED显示单个字符
/******************************************************************************/
void Oled_Show_Str(char row,char col,char *str){
	while(*str!=0){
		Oled_Show_Char(row,col,*str);
		str++;
		col += 8;	
	}		
}


//esp8266.c
#include "uart.h"

//1 工作在路由模式
code char LYMO[] = "AT+CWMODE=2\r\n";
//2 使能多链接
code char DLJ[] = "AT+CIPMUX=1\r\n"; 
//3 建立TCPServer
code char JLFW[] = "AT+CIPSERVER=1\r\n"; // default port = 333 



char AT_OK_Flag = 0;				//OK返回值的标志位
char Client_Connect_Flag = 0;

void initWifi_AP()
{
	SendString(LYMO);
	while(!AT_OK_Flag);
	AT_OK_Flag = 0;
	SendString(DLJ);
	while(!AT_OK_Flag);
	AT_OK_Flag = 0;
}

void waitConnect()
{
	SendString(JLFW);
	while(!Client_Connect_Flag);
	AT_OK_Flag = 0;	
}

//delay.c
#include "intrins.h"

void Delay1000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 8;
	j = 1;
	k = 243;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}

5.4 4g控制小车

原理:运用EC03-DNC4G通信模块

模块介绍:

  • 基于串口AT指令的开发方式
  • 有两种工作模式,默认是透传模式,通过其他方式进入AT指令模式
  • 注意插卡不要出错,下图红色位置为SIM卡状态灯,亮才是正常

代码不做修改,直接基于蓝牙小车整合, 4g模块只要做好外网透传就可以了

6.语音控制小车

6.1语音模块配置

使用SU-03T / LD3320

具体介绍看我之前写过的博客:https://blog.csdn.net/m0_74712453/article/details/13171085

6.2 语音控制小车开发和调试代码

代码示例:

//main.c
#include "reg52.h"
#include "hc04.h"
#include "delay.h"
#include "sg90.h"
#include "Oled.h"
#include "motor.h"

#define MIDDLE 0
#define LEFT 1
#define RIGHT 2

#define BZ 1
#define XJ 2
#define GS 3


sbit A25 = P1^5;
sbit A26 = P1^6;
sbit A27 = P1^7;

sbit leftSensorX = P2^7;
sbit rightSensorX = P2^6;

sbit leftSensorG = P2^5;
sbit rightSensorG = P2^4;

char dir;
	
double disMiddle;
double disLeft;
double disRight;

void xunjiMode()
{
		if(leftSensorX == 0 && rightSensorX == 0){
			goForward();
		}
		if(leftSensorX == 1 && rightSensorX == 0){
			goLeft();
		}
		
		if(leftSensorX == 0 && rightSensorX == 1){
			goRight();
		}
		
		if(leftSensorX == 1 && rightSensorX == 1){
			//停
			stop();
		}
}

void gensuiMode()
{
		if(leftSensorG == 0 && rightSensorG == 0){
			goForward();
		}
		if(leftSensorG == 1 && rightSensorG == 0){
			goRight();
		}
		
		if(leftSensorG == 0 && rightSensorG == 1){
			
			goLeft();
		}
		
		if(leftSensorG == 1 && rightSensorG == 1){
			//停
			stop();
		}
}

void bizhangMode()
{
	if(dir != MIDDLE){
			sgMiddle();
			dir = MIDDLE;
			Delay300ms();
		}
		disMiddle = get_distance();
		
		if(disMiddle > 35){
			//前进
			goForward();
		}else if(disMiddle < 10){
			goBack();
			
		}else
		{
			//停止
			stop();
			//测左边距离
			sgLeft();
			Delay300ms();
			disLeft = get_distance();
			
			sgMiddle();
			Delay300ms();
			
			sgRight();
			dir = RIGHT;
			Delay300ms();
			disRight = get_distance();
			
			if(disLeft < disRight){
				goRight();
				Delay150ms();
				stop();
			}
			if(disRight < disLeft){
				goLeft();
				Delay150ms();
				stop();
			}
		}

}

void main()
{

	int mark = 0;
	
	Time0Init();
	Time1Init();
	//舵机的初始位置

	sgMiddle();
	Delay300ms();
	Delay300ms();
	dir = MIDDLE;
	
	Oled_Init();
	Oled_Clear();
	Oled_Show_Str(2,2,"-----Ready----");
	
	while(1){
		//满足寻迹模式的条件
		if(A25 == 0 && A26 == 1 && A27 == 1){
			if(mark != XJ){
				Oled_Clear();
				Oled_Show_Str(2,2,"-----XunJi----");
			}
			mark = XJ;
			xunjiMode();
		}
		//满足跟随模式的条件
		if(A25 == 1 && A26 == 0 && A27 == 1){
			if(mark != GS){
				Oled_Clear();
				Oled_Show_Str(2,2,"-----GenSui----");
			}
			mark = GS;
			gensuiMode();
		}
		//满足避障模式的条件
		if(A25 == 1 && A26 == 1 && A27 == 0){
			if(mark != BZ){
				Oled_Clear();
				Oled_Show_Str(2,2,"-----BiZhang----");
			}
			mark = BZ;
			bizhangMode();
		}
	
	}
}


//hc04.c
#include "reg52.h"
#include "delay.h"

sbit Trig     = P2^3;
sbit Echo     = P2^2;

void Time1Init()
{	
	TMOD &= 0x0F;		//设置定时器模式
	TMOD |= 0x10;
	TH1 = 0;
	TL1 = 0;
	//设置定时器0工作模式1,初始值设定0开始数数,不着急启动定时器
}

void startHC()
{
	Trig = 0;
	Trig = 1;
	Delay10us();
	Trig = 0;
}

double get_distance()
{
		double time;
		//定时器数据清零,以便下一次测距
		TH1 = 0;
		TL1 = 0;
	//1. Trig ,给Trig端口至少10us的高电平
		startHC();
		//2. echo由低电平跳转到高电平,表示开始发送波
		while(Echo == 0);
		//波发出去的那一下,开始启动定时器
		TR1 = 1;
		//3. 由高电平跳转回低电平,表示波回来了
		while(Echo == 1);
		//波回来的那一下,我们开始停止定时器
		TR1 = 0;
		//4. 计算出中间经过多少时间
		time = (TH1 * 256 + TL1)*1.085;//us为单位
		//5. 距离 = 速度 (340m/s)* 时间/2
		return  (time * 0.017);
}


//delay.c
#include "intrins.h"

void Delay2000ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 15;
	j = 2;
	k = 235;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


void Delay10us()		//@11.0592MHz
{
	unsigned char i;

	i = 2;
	while (--i);
}

void Delay300ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 3;
	j = 26;
	k = 223;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


void Delay150ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	i = 2;
	j = 13;
	k = 237;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}

void Delay450ms()		//@11.0592MHz
{
	unsigned char i, j, k;

	_nop_();
	i = 4;
	j = 39;
	k = 209;
	do
	{
		do
		{
			while (--k);
		} while (--j);
	} while (--i);
}


//sg90.c
#include "reg52.h"
#include "delay.h"

sbit sg90_con = P1^1;

int jd;
int cnt = 0;

void Time0Init()
{
	//1. 配置定时器0工作模式位16位计时
	TMOD &= 0xF0;		//设置定时器模式
	TMOD |= 0x01;
	//2. 给初值,定一个0.5出来
	TL0=0x33;
	TH0=0xFE;
	//3. 开始计时
	TR0 = 1;
	TF0 = 0;
	//4. 打开定时器0中断
	ET0 = 1;
	//5. 打开总中断EA
	EA = 1;
}

void sgMiddle()
{
	//中间位置
	jd = 3; //90度 1.5ms高电平
	cnt = 0;
}

void sgLeft()
{
	//左边位置
	jd = 5; //135度 1.5ms高电平
	cnt = 0;
}

void sgRight()
{
	//右边位置
	jd = 1; //0度
	cnt = 0;
}


void Time0Handler() interrupt 1
{
	cnt++;  //统计爆表的次数. cnt=1的时候,报表了1
	//重新给初值
	TL0=0x33;
	TH0=0xFE;
	
	//控制PWM波
	if(cnt < jd){
		sg90_con = 1;
	}else{
		sg90_con = 0;
	}
	
	if(cnt == 40){//爆表40次,经过了20ms
		cnt = 0;  //当100次表示1s,重新让cnt从0开始,计算下一次的1s
		sg90_con = 1;
	}
		
}

//motor.c
#include "reg52.h"

sbit RightCon1A = P3^7;
sbit RightCon1B = P3^3;

sbit LeftCon1A = P3^4;
sbit LeftCon1B = P3^5;

void goForward()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goRight()
{
	LeftCon1A = 0;
	LeftCon1B = 1;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


void goLeft()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 1;
}

void goBack()
{
	LeftCon1A = 1;
	LeftCon1B = 0;
	
	RightCon1A = 1;
	RightCon1B = 0;
}

void stop()
{
	LeftCon1A = 0;
	LeftCon1B = 0;
	
	RightCon1A = 0;
	RightCon1B = 0;
}


//oled.c
#include "reg52.h"
#include "intrins.h"
#include "Oledfont.h"


sbit scl = P1^2;
sbit sda = P1^3;

void IIC_Start()
{
	scl = 0;
	sda = 1;
	scl = 1;
	_nop_();
	sda = 0;
	_nop_();
}

void IIC_Stop()
{
	scl = 0;
	sda = 0;
	scl = 1;
	_nop_();
	sda = 1;
	_nop_();
}

char IIC_ACK()
{
	char flag;
	sda = 1;//就在时钟脉冲9期间释放数据线
	_nop_();
	scl = 1;
	_nop_();
	flag = sda;
	_nop_();
	scl = 0;
	_nop_();
	
	return flag;
}

void IIC_Send_Byte(char dataSend)
{
	int i;
	
	for(i = 0;i<8;i++){
		scl = 0;//scl拉低,让sda做好数据准备
		sda = dataSend & 0x80;//1000 0000获得dataSend的最高位,给sda
		_nop_();//发送数据建立时间
		scl = 1;//scl拉高开始发送
		_nop_();//数据发送时间
		scl = 0;//发送完毕拉低
		_nop_();//
		dataSend = dataSend << 1;
	}
}

void Oled_Write_Cmd(char dataCmd)
{
	//	1. start()
	IIC_Start();
	//		
	//	2. 写入从机地址  b0111 1000 0x78
	IIC_Send_Byte(0x78);
	//	3. ACK
	IIC_ACK();
	//	4. cotrol byte: (0)(0)000000 写入命令   (0)(1)000000写入数据
	IIC_Send_Byte(0x00);
	//	5. ACK
	IIC_ACK();
	//6. 写入指令/数据
	IIC_Send_Byte(dataCmd);
	//7. ACK
	IIC_ACK();
	//8. STOP
	IIC_Stop();
}

void Oled_Write_Data(char dataData)
{
	//	1. start()
	IIC_Start();
	//		
	//	2. 写入从机地址  b0111 1000 0x78
	IIC_Send_Byte(0x78);
	//	3. ACK
	IIC_ACK();
	//	4. cotrol byte: (0)(0)000000 写入命令   (0)(1)000000写入数据
	IIC_Send_Byte(0x40);
	//	5. ACK
	IIC_ACK();
	///6. 写入指令/数据
	IIC_Send_Byte(dataData);
	//7. ACK
	IIC_ACK();
	//8. STOP
	IIC_Stop();
}


void Oled_Init(void){
	Oled_Write_Cmd(0xAE);//--display off
	Oled_Write_Cmd(0x00);//---set low column address
	Oled_Write_Cmd(0x10);//---set high column address
	Oled_Write_Cmd(0x40);//--set start line address  
	Oled_Write_Cmd(0xB0);//--set page address
	Oled_Write_Cmd(0x81); // contract control
	Oled_Write_Cmd(0xFF);//--128   
	Oled_Write_Cmd(0xA1);//set segment remap 
	Oled_Write_Cmd(0xA6);//--normal / reverse
	Oled_Write_Cmd(0xA8);//--set multiplex ratio(1 to 64)
	Oled_Write_Cmd(0x3F);//--1/32 duty
	Oled_Write_Cmd(0xC8);//Com scan direction
	Oled_Write_Cmd(0xD3);//-set display offset
	Oled_Write_Cmd(0x00);//
	
	Oled_Write_Cmd(0xD5);//set osc division
	Oled_Write_Cmd(0x80);//
	
	Oled_Write_Cmd(0xD8);//set area color mode off
	Oled_Write_Cmd(0x05);//
	
	Oled_Write_Cmd(0xD9);//Set Pre-Charge Period
	Oled_Write_Cmd(0xF1);//
	
	Oled_Write_Cmd(0xDA);//set com pin configuartion
	Oled_Write_Cmd(0x12);//
	
	Oled_Write_Cmd(0xDB);//set Vcomh
	Oled_Write_Cmd(0x30);//
	
	Oled_Write_Cmd(0x8D);//set charge pump enable
	Oled_Write_Cmd(0x14);//
	
	Oled_Write_Cmd(0xAF);//--turn on oled panel		
}

void Oled_Clear()
{
	unsigned char i,j; //-128 --- 127
	
	for(i=0;i<8;i++){
		Oled_Write_Cmd(0xB0 + i);//page0--page7
		//每个page从0列
		Oled_Write_Cmd(0x00);
		Oled_Write_Cmd(0x10);
		//0到127列,依次写入0,每写入数据,列地址自动偏移
		for(j = 0;j<128;j++){
			Oled_Write_Data(0);
		}
	}
}

void Oled_Show_Char(char row,char col,char oledChar){ //row*2-2
	unsigned int  i;
	Oled_Write_Cmd(0xb0+(row*2-2));                           //page 0
	Oled_Write_Cmd(0x00+(col&0x0f));                          //low
	Oled_Write_Cmd(0x10+(col>>4));                            //high	
	for(i=((oledChar-32)*16);i<((oledChar-32)*16+8);i++){
		Oled_Write_Data(F8X16[i]);                            //写数据oledTable1
	}

	Oled_Write_Cmd(0xb0+(row*2-1));                           //page 1
	Oled_Write_Cmd(0x00+(col&0x0f));                          //low
	Oled_Write_Cmd(0x10+(col>>4));                            //high
	for(i=((oledChar-32)*16+8);i<((oledChar-32)*16+8+8);i++){
		Oled_Write_Data(F8X16[i]);                            //写数据oledTable1
	}		
}


/******************************************************************************/
// 函数名称:Oled_Show_Char 
// 输入参数:oledChar 
// 输出参数:无 
// 函数功能:OLED显示单个字符
/******************************************************************************/
void Oled_Show_Str(char row,char col,char *str){
	while(*str!=0){
		Oled_Show_Char(row,col,*str);
		str++;
		col += 8;	
	}		
}




​​​​​​​

猜你喜欢

转载自blog.csdn.net/m0_74712453/article/details/132702785